
Nektar++

Basic Routines
in LibUtilities

Nektar++

Outline

• Set up the problem (weak solution of the
Helmholtz Problem)

• Polynomial Basis
• Interpolation
• Differentiation
• Integration
• Projection

Nektar++

Tutorial Driving Application:
Helmholtz Problem

−∇2u + λu = f x ∈ Ω
u = g(x) x ∈ ∂ΩD Ω

∂ΩD

Find u ∈ V such that u satisfies the boundary
conditions and such that for all v ∈ V0,

(∇u,∇v) + (u, v) = (f, v)

Nektar++

What do we need?

(∇u,∇v) + (u, v) = (f, v)

Representation Differentiation Integration

Polynomials
Numerical

Differentiation
Quadrature

Nektar++

Polynomial Basis:
Choosing a representation

u(x) = a0 + a1x + a2x
2 + . . .

Polynomials provide a powerful means of representing
continuous functions

Monomial Basis

u(x) = u(x0)h0(x) + u(x1)h1(x) + . . .

u(x) = û0L0(x) + û1L1(x) + . . .

Lagrange Basis

Legendre Basis

BasisType eMonomial

BasisType eGLL_Lagrange

BasisType eLegendre

Nektar++

Interpolation

Given a collection of points x0, . . . , xN and function values
f0, . . . , fN at those point, find an approximation u(x)

such that u(xj) = f(xj) for all j

hi(xj) = δij

xj

f(xj)

u(x) =
N∑

i=0

f(xi)hi(x)

Lagrange Basis:

where

Interpolant

Nektar++

Interpolation




h0(z0) . . . hN (z0)

...
h0(zM) . . . hN (zM)








u(x0)

...
u(xN)








u(z0)

...
u(zM)



 =

Values at pointsInterpolation MatrixValues at new points

LibUtilities::Points.GetI()

Given z0, z1, . . . , zM and
∑N

i=1 u(xi)hi(x)

u(zk) =
∑N

i=0 u(xi)hi(zk)

Nektar++

Differentiation

Monomial Basis

Lagrange Basis

Legendre Basis

d

dx
u(x) = a1 + 2a2x + . . .

d

dx
u(x) = u(x0)h′

0(x) + u(x1)h′
1(x) + . . .

d

dx
u(x) = û0L

′
0(x) + û1L

′
1(x) + . . .

Nektar++

Differentiation




h′

0(z0) . . . h′
N (z0)

...
h′

0(zM) . . . h′
N (zM)








u′(z0)

...
u′(zM)



 =




u(x0)

...
u(xN)





Values at pointsDerivative MatrixDerivatives at new points

LibUtilities::Points.GetD()

Given z0, z1, . . . , zM and
∑N

i=1 u(xi)hi(x)

u′(zk) =
∑N

i=0 u(xi)h′
i(zk)

Nektar++

Integration

Nodal triangular expansions Non-tensorial nodal expansions are typically constructed as set of
Lagrange polynomials through a certain set of (non-tensorial) nodal points in the triangular region. By
constraining the nodal points along all the edges to the one-dimensional Gauss-Lobatto-Legendre points,
the nodal triangular basis can be used in conjunction with the nodal quadrilateral spectral element
expansion. Different distributions (e.g. Fekete points, Electrostatic points) have been proposed for the
remaining interior nodal points, as outlined in [8].

Although this type of nodal expansions on the triangular region do not yield a tensorial structure,
the set of Lagrange basis functions can be expressed in terms of a tensorial basis which spans the same
polynomial space. Therefore, consider a set of Nm nodal points ξi and a tensorial basis consisting of the
set of basis functions {φn(ξ)}. The different Lagrange polynomials {Ln(ξ)} defining the nodal expansion
then can be expressed as:







L0(ξ)
...

LNm−1(ξ)






= V −T







φ0(ξ)
...

φNm−1(ξ)






(2.15)

where V [i][j] = φj(ξi) is known as the generalised Vandermonde matrix. Using this transformation from
nodal to modal expansion, the non-tensorial nodal expansion can be treated as a tensorial expansion and
consequently, the factorisation techniques of next chapter can be applied to this type of expansions as
well.

Three-dimensional tensor product expansions The construction of tensorial bases in three di-
mensions is similar to the two-dimensional case. However, in three dimensions, one can distinguish four
different standard regions: hexahedral, prismatic, pyramidic and tetrahedral elements. For the formula-
tion of the tensorial expansion bases on these regions, the reader is directed to [8].

2.2 Numerical integration

The variational form of the problem in the finite element method requires the evaluation of integrals over
the domain. To allow for a numerical implementation of the FEM, different discrete integration rules,
also known as numerical quadrature, have been proposed. In spectral/hp element methods, Gaussian
quadrature is typically employed to evaluate integrals. The fundamental concept of Gaussian quadrature,
which is particularly accurate when integrating smooth functions, is the approximation of the integral by
a finite summation. In the one-dimensional standard segment region, this yields the form (for Legendre
integration),

∫ 1

−1
u(ξ)dξ ≈

Q−1
∑

i=0

wiu(ξi), (2.16)

where wi and ξi respectively are the weights and abscissas of the Q quadrature points within the standard
segment. Dependent on the choice of the quadrature points, in particular the inclusion of the endpoints
of the standard segment interval, one can distinguish between Gauss-Legendre, Gauss-Radau-Legendre
and Gauss-Lobatto-Legendre quadrature. The use of Gaussian quadrature contributes to the efficiency
of the FEM, as it permits the exact integration of polynomials of order exceeding Q − 1. Concretely,
relation (2.5) is exact when,

• u(ξ) ∈ P2Q−1 ([−1, 1]) if using Gauss-Legendre quadrature,

• u(ξ) ∈ P2Q−2 ([−1, 1]) if using Gauss-Radau-Legendre quadrature,

• u(ξ) ∈ P2Q−3 ([−1, 1]) if using Gauss-Lobatto-Legendre quadrature.

This ensures that all discrete first and second order linear operators in the spectral/hp element method
will be evaluated exactly if the quadrature order is chosen to be at least,

• Q = P + 1 if using Gauss-Legendre or Gauss-Radau-Legendre quadrature,

11

integrating polynomials
• polynomial of order P: P+1 parameters
• Gaussian quadrature:

• Q ≥ P/2 + 0.5 (Gauss-Legendre)
• Q ≥ P/2 + 1.0 (Gauss-Radau-Legendre)
• Q ≥ P/2 + 1.5 (Gauss-Lobatto-Legendre)

2D:

• Q = P + 2 if using Gauss-Lobatto-Legendre quadrature.

However, note the integration of, for example, quadratic non-linearities or the integration over curved
elements may require a higher number of quadrature points.

Numerical integration using Gaussian quadrature can be trivially extended to the two-dimensional stan-
dard regions, yielding

Quadrilateral region Q2

∫ 1

−1

∫ 1

−1
u(ξ1, ξ2)dξ1dξ2 ≈

Q1−1
∑

i=0

wi







Q2−1
∑

j=0

wju(ξ1i
, ξ2j

)







, (2.17)

Triangular region T 2

∫

T 2

u(ξ1, ξ2)dξ1dξ2 =

∫ 1

−1

∫ 1

−1
u(η1, η2)

∣

∣

∣

∣

∂(ξ1, ξ2)

∂(η1, η2)

∣

∣

∣

∣

dη1dη2 ≈
Q1−1
∑

i=0

wi







Q2−1
∑

j=0

wj

1 − η2j

2
u(η1i

, η2j
)







.

(2.18)

Gaussian quadrature: a remarkable property

1st order

a
b

2nd order

a
b

2nd order

a
b

3rd order

a
b

3rd order

a
b

3rd order

a
b

-1 0 1-1 0 1-1 0 1

-1 0 1-1 0 1-1 0 1

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

Figure 2.5: 2nd order Gauss-Legendre
quadrature: All polynomials u(ξ) ∈
P3 ([−1, 1]) going through the points a

and b yield the same value for
∫ 1
−1 u(ξ)dξ

Gauss first recognised that for a particular choice of Q ab-
scissas, it is possible to exactly integrate polynomials of
order higher than Q − 1. For Gauss-Legendre quadrature
using Q quadrature points, he showed that any polynomial
up to order 2Q − 1 can be integrated exactly.

However, when inverting this idea, the following remark-
able fact can be recognised: every polynomial in the space
P2Q−1 which has the same function values at the Q quadra-
ture points, yields the same integral in the interval [−1, 1].
This is demonstrated in Fig. 2.5 for 2nd order Gauss-
Legendre integration. The points a and b, located at the

two quadrature zeros ξ = ±
√

1
3 , uniquely define a linear

polynomial and define an infinite set of quadratic and cu-
bic polynomials. It is a direct result from the properties of
Gaussian quadrature, that all these polynomials (up to 3th

order) have the same integral in the interval [−1, 1]. This
implies that the area of the shaded region in Fig. 2.5 is
equal for every subfigure.

12

Nektar++

Integration

1st order

a
b

2nd order

a
b

2nd order

a
b

3rd order

a
b

3rd order

a
b

3rd order

a
b

-1 0 1-1 0 1-1 0 1

-1 0 1-1 0 1-1 0 1

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

a remarkable property
• fix Q
• exact integration for every polynomial up to order (2Q-1)

Nektar++

Projection

Given a function f(x) on [−1, 1] find coefficients ûj such that

where R(u) = u(x)− f(x)

with u(x) =
N∑

j=0

ûjφj(x)

xj

f(xj)

Projection

(φk, R(u)) = 0 for all φk, k = 0, . . . , N

Nektar++

Projection
For each k, (φk, R(u)) = 0
=⇒ (φk, u(x)− f(x)) = 0

=⇒ (φk,
∑N

j=0 ûjφj − f(x)) = 0

=⇒ (φk,
∑N

j=0 ûjφj) = (φk, f(x))

=⇒
∑N

j=0(φk, φj)ûj = (φk, f)

Quadrature Approximation
of Inner Products

(φk, f) ≈
Q−1∑

i=0

wiφk(ξi)f(ξi)




(φ0, φ0) . . . (φ0, φN)

...
(φN , φ0) . . . (φN , φN)








û0
...

ûN



 =




(φ0, f)

...
(φN , f)





Nektar++

Nektar++ code

StdSegExp

StdTriExp

S
td

R
e
g
io

n
s

li
b
ra

ry
L
o
c
a
lR

e
g
io

n
s

li
b
ra

ry

objecs of these classes contain:

SegExp QuadExp

TriExp

HexExp

PrismExp

PyrExp

TetExp

ExpList3D

ExpList

ExpList1D

this library contains:

• linear algebra routines
• block-matrix routines
• data managers and memory pools
• polynomial manipulation routines

several utilities supporting the other libraries

S
p
a
ti

a
lD

o
m

a
in

s
li
b
ra

ry

the geometry of an element
• data: ◦ a standard expansion (a parametrix mapping from a standard

objects of these classes contain:

Geometry

HexGeom

TetGeom

M
u
lt

iR
e
g
io

n
s

li
b
ra

ry

• data: ◦ a list of local elemental expansions
• da for the classes ContExpList iD, ContField iD, DisContField iD:

• data: ◦ the global coefficients ûg

• data: ◦ a mapping array from the local to the global degrees of freedom

objects of these classes contain:

• da for the classes ContField iD, DisContField iD:
• data: ◦ information about the boundary conditions

• data: ◦ the basis φp(ξi)

expansion on local element u(xi) =
∑

p φp(xi)ûp

• data: ◦ the coefficients ûp

• data: ◦ the geometry of the element

• data: ◦ the basis φp(xi)

• data: ◦ the physical values u(xi)

expansion on a global region u(xi) =
∑

e

∑
p φe

p(xi)ûe
p

• data: ◦ to the local element, which entirely describes the geometry)
• data: ◦ the geometric factors of the transformation (Jacobian, ...)

objects of these

• data: ◦ the physical values u(ξi)
• data: ◦ the coefficients ûp

classes contain:
expansion on standard element u(ξi) =

∑
p φp(ξi)ûp

L
ib

U
ti

li
ti

e
s

li
b
ra

ry

DisContField2D DisContField3DDisContField1D

ContField1D ContField2D ContField3D

ContExpList3DContExpList2DContExpList1D

ExpList2D

StdExpansion3D

StdHexExp

StdPyrExp

StdQuadExp

EdgeComp

SegGeom QuadGeom

TriGeom

PrismGeom

PyrGeom

VertexComp

TriFaceComp

Geometry3DGeometry2DGeometry1D

StdExpansion

StdPrismExp

StdTetExp

QuadFaceComp

StdExpansion2DStdExpansion1D

