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where

u′
p =

P∑

q=0

uq
∂hq

∂ξ
(ξ)

∣∣∣∣
ξp

.

This is very significant when calculating non-linear terms such as the advection operator in
the Navier-Stokes equation. For example, to determine the value of the non-linear product

uδ(ξ)
∂uδ

∂ξ
(ξ)

at a point ξi we have:

uδ(ξi)
∂uδ

∂ξ
(ξi) =

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

uq
∂hq

∂ξ
(ξi)

)
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(
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uphp(ξi)

)(
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u′
qhq(ξi)

)

.

Since hp(ξi) = δpi and hq(ξi) = δqi then

uδ(ξi)
∂uδ

∂ξ
(ξi) = uiu

′
i.

Finally, we can represent our nonlinear product in terms of an expansion of Lagrange poly-
nomials as

uδ(ξ)
∂uδ

∂ξ
(ξ) !

P∑

p=0

upu
′
php(ξ).

We note however that if uδ(ξ) is a polynomial of order P then the non-linear product

uδ(ξ)∂uδ

∂ξ (ξ) is a polynomial of order (2P − 1) and so it cannot be exactly represented by

the Lagrange polynomial expansion of order P . At the nodal points the coefficient upu′
p will

be identical to the value of uδ(ξp)∂uδ

∂ξ (ξp). Nevertheless, projecting the non-linear terms to
a lower polynomial order in this fashion can lead to aliasing errors as discussed in section
1.4.1.2.

Although this example is in one-dimension, the same properties apply in multiple di-
mensions provided the expansion can be represented by a tensor product of Lagrange poly-
nomials. Using the collapsed Cartesian coordinates systems described in section 2.2.1 it
is possible to represent any polynomial expansion as a tensor product of one-dimensional
Lagrange polynomials.

3.1.2.1 Two Dimensions Differentiation in the Standard Regions, Ωst

Implementation.
note: Numerical
differentiation in Ωst:
Quadrilateral and
triangular regions.

Quadrilateral Region

To differentiate an expansion within the standard quadrilateral region Q2 of the form:

uδ(ξ1, ξ2) =
P1∑

p=0

P2∑

q=0

ûpqφpq(ξ1, ξ2),

we first represent the function in terms of Lagrange polynomials so

uδ(ξ1, ξ2) =
Q1−1∑

p=0

Q2−1∑

q=0

upq hp(ξ1)hq(ξ2),

Ch. 3 Multi-dimensional Formulation 111

!1

!2

x1

x2

xi  = fi
A(!1)

}

}xi  = fi
C(!1)

}xi  = fi
D(!2)

}
xi  = fi

B(!2)

!1

!2 "
i
(!1,!2)

Figure 3.4 A general curved element can be described in terms of a series of parametric functions
fA(ξ1), fB(ξ2), fC(ξ1), and fD(ξ2). Representing these functions as a discrete expansion we can
construct an iso-parametric mapping χi(ξ1, ξ2) relating the standard region (ξ1, ξ2) to the deformed
region (x1, x2).

the hierarchical modal expansion. For example, a quadrilateral domain of the form shown
in figure 3.2(b) the mapping can be defined by equation (3.37).

We note that this simply involves the vertex modes of the modified hierarchical expansion
basis within a quadrilateral domain (see section 2.1.1). We could, therefore, have written
the expansion as

xi = χi(ξ1, ξ2) =
p=P1∑

p=0

q=P2∑

q=0

x̂i
pqφpq(ξ1, ξ2) (3.38)

where φpq = ψa
p (ξ1)ψa

q (ξ2) and x̂i
pq = 0 except for the vertex modes which have a value of

x̂i
00 = xA

i x̂i
P10 = xB

i x̂i
P1P2

= xC
i x̂i

0P2
= xD

i .

The construction of a mapping based upon the expansion modes in this form can be
extended to include curved sided regions using an isoparametric representation. In this
technique the geometry is represented with an expansion of the same form and polynomial
order as the unknown variables.

To describe a straight-sided region we needed only to know the values of the vertex
locations. To describe a curved region, however, requires more information. As illustrated
in figure 3.4, we typically expect to have a definition of a mapping of the shape of each edge
in terms of the local coordinates which we denote as fA

i (ξ1), fB
i (ξ2), fC

i (ξ1) and fD
i (ξ2). The

process of defining the mapping functions can be considered as part of the mesh generation
process, the discussion of which is in section 3.3.3.

Knowing the definition of the edges (or faces in three-dimensions) a mapping for a
curvilinear domains can be determined using the isoparametric form of equation (3.38)
to include more non-zero expansion coefficients than simply the vertex contributions. In
two-dimensions we wish to use the coefficient along each edge of the element, and in three-
dimensions we can use the face coefficients as well. Along each edge we therefore need to
approximate the shape mapping fi(ξ) if it is not already represented by a polynomial of

uδ(x1, x2) =
P1∑

p=0

P2∑

q=0

ûpqφpq(x1, x2)

uδ(x1, x2) =
Nel
∑

e=1

(

P1
∑

p=0

P2
∑

q=0

ûe
pqφ

e
pq(x1, x2)

)
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• Choice of Tensorial Expansions 
• Standard Segments       

(StdRegions::StdSegExp)
• Standard Quadrilaterals 

(StdRegions::StdQuadExp)
• Standard Triangles         

(StdRegions::StdTriExp)

• Sum Factorisation of tensorial 
bases (notes: 3.1.6)
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Figure 1.3 Global and local expansion coefficient and bases in a three element decomposition of
the domain Ω.

The relationship between the local and global expansion coefficients is therefore

û1
0 = û0

û1
1 = û2

0 = û1

û2
1 = û3

0 = û2

û3
1 = û3.

In this example, it can be seen that the local representation of the function has 6 elemental
degrees of freedom [(Neof = Nel · (P + 1) = 6)] but only 4 global degrees of freedom
(Ndof = 4). The two constraints shown in (1.32) ensure that uδ(x) is C0 continuous, which
is a sufficient condition to ensure that the expansion is in H1 space and thereby can be an
admissible function for the trial space X δ for a second-order elliptic problem.

To construct a more general description of the local to global mapping we let ûg denote
a vector of all global coefficients,

ûg = [û0, . . . , ûNdof−1]
T ,

and if ûe is a vector of the local coefficients (that is, ûe = [ûe
0, û

e
1]) in element e, then the

vector of all local coefficients, denoted by ûl can be written as

ûl =





û1

û2

· · ·
ûNel



 .

Classic linear finite elements
expansion

Standard Region [-1,1]
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This definition allows both the mapping χe(ξ) and the polynomial order P e to vary within
each element e thereby permitting both h-type refinement, which alters χe(ξ) and Nel, and
p-type refinement, which alters P e.

In principle, all of the construction discussed in section 1.3.1 applies equally well to an hp
elemental decomposition. As we shall see in section 1.3.2.2, the most standard polynomial
decompositions have what is known as a boundary and interior decomposition, which permits
us directly to use the construction adopted for linear elements in section 1.3.1 for higher order
polynomial expansions. Examples of polynomial expansions with this type of decomposition
will be discussed in sections 1.3.3.3 and 1.3.4. However, before introducing these expansions
in section 1.3.2.1 we will first try to explain why certain forms of polynomial expansions are
more favourable than others.

1.3.2.1 Construction of a Polynomial Expansion

In an hp elemental discretisation we can apply a polynomial expansion of any order within
each elemental region. It is therefore appropriate to start our discussion of p-type methods
by considering what makes an acceptable p-type expansion in a single domain.

The steps involved in designing an elemental p-type expansion, which we will also later
adopt in constructing the unstructured basis in section 2.2, are:

• Determine a favourable expansion within a standard region.

• Modify the expansion so that it can easily be numerically implemented.

In the first step, a favourable expansion is typically an orthogonal or near orthogonal set of
functions within the standard regions. In the second step, the computational considerations
of implementing this basis are taken into account and the basis is modified, if necessary, to
facilitate this process. Typically, the basis is decomposed into contributions on the boundary
and interior of the standard region since this simplifies the elemental decomposition process.

Modal and Nodal Expansions

Before discussing the benefits of different types of polynomial expansions, we first need to
introduce the concepts of modal and nodal expansions. To illustrate the difference between
a modal and a nodal polynomial expansion we introduce three expansion sets denoted by
ΦA

p (x), ΦB
p (x), and ΦC

p (x) (0 ≤ p ≤ P ), in the region Ωst = {x | − 1 ≤ x ≤ 1}. All of these
expansions represent a complete set of polynomials up to order P and are mathematically
defined as

ΦA
p (x) = xp p = 0, . . . , P

ΦB
p (x) =

∏P
q=0,q !=p(x − xq)

∏P
q=0,q !=p(xp − xq)

p = 0, . . . , P

ΦC
p (x) = Lp(x) p = 0, . . . , P.

The shape of these expansions can be seen in figure 1.4(a). The first expansion set simply
increases the order of x in a monomial fashion and we shall refer to it as the moment
expansion (each order contributing an extra moment to the expansion). This basis is referred
to as a modal or a hierarchical expansion because the expansion set of order (P − 1) is
contained within the expansion set of order P . There is a notion of hierarchy in the sense that
higher order expansion sets are built from the lower order expansion sets. If we denote the
trial space containing all the polynomials in ΦA

p (x) up to order P by X δ
P then a hierarchical
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• To start our discussion we can consider three different expansion

bases as shown in figure 10 (for even order of p):

1. • ΦA
p (x), increases the order of x is a moment expansion (each

order contributing an extra moment to the expansion).

• Basis is hierarchical modal.

2. • ΦB
p (x) is a Lagrange polynomial based on a series of P + 1

nodal points xq.

• Lagrange polynomial is a non-hierarchical basis

• The Lagrange basis has the property that ΦB
p (xq) = δpq

uδ(x) =
P

∑

p=0

ûpΦ
B
p (x),

113
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Figure 1.4 (a) Expansion modes (p even) in space for three expansion bases ΦA
p (x)(moment),

ΦB
p (x) (Lagrange), and ΦC

p (x) (Legendre) of order P = 10 in the region (−1 ≤ x ≤ 1). (b) Lin-log

plot of the condition number of the mass matrix versus polynomial order for the bases ΦA
p (x), ΦB

p (x),
and ΦC

p (x).

inversion of matrix systems; a full discussion can be found in Isaacson and Keller 47. The
condition number κ2 is defined as

κ2 = ||M ||2 · ||M−1||2,

where ||M ||2 denotes the matrix L2 norm of M .
When numerically inverting a matrix system there is an error associated with the inexact

representation of the matrix due to round-off error. If a matrix system is ill-conditioned the
round-off error in the matrix system can lead to large errors in the solution. Further, when
using iterative techniques to invert the system the number of iterations required to perform
the inversion typically depends on the conditioning of the matrix.

The condition number in the L2 norm for the three types of expansion bases ΦA
p (x), ΦB

p (x),
and ΦC

p (x) is shown in figure 1.4(b) as a function of polynomial order. We see that the con-
dition number of the mass matrix for the moment expansion grows as κ2 ∝ 10P . Initially,
the conditioning of the equi-spaced Lagrange basis is relatively good; however, after about
P ≈ 5 the condition number also starts to grow as κ2 ∝ 10P . In contrast, the Legendre
basis is very well conditioned for all values of P . This is because the L2 matrix norm for
a real symmetric matrix is the ratio of the maximum to minimum eigenvalues and so the
condition number for the Legendre mass matrix is exactly κ2 = 2P + 1.

The poor conditioning of the moment and Lagrange expansion reflects the fact that the
basis is becoming numerically linearly dependent. This is particularly evident for ΦA

p (x) as
shown in the top plot of figure 1.4(a), where we have plotted the even moment expansion
modes as a function of x, for different polynomial orders p. We observe that the mode for
p = 8 is practically indistinguishable from the mode when p = 10. Although each mode of
ΦB

p (x) is clearly distinguishable from the other in the middle plot of figure 1.4(a), the poor
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• Expansion coefficient ûp can be defined in terms of

approximate solution at the point xp since

uδ(xq) =
P

∑

p=0

ûpΦ
B
p (xq) =

P
∑

p=o

ûpδpq = ûq.

• The coefficients have a physical interpretation in that they

represent the approximate solution at the points xqand the

Lagrange expansion basis is therefore nodal..

• Linear finite elements are a nodal expansion.

3. Φc
p(x), is a hierarchical modal expansion.

• Based on the Legendre polynomial Lp(x). which is orthogonal

in the Legendre inner product

(Lp(x), Lq(x)) =

∫ 1

−1
Lp(x)Lq(x)dx =

(

2

2p + 1

)

δpq.
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p (x), ΦB

p (x),
and ΦC

p (x) is shown in figure 1.4(b) as a function of polynomial order. We see that the con-
dition number of the mass matrix for the moment expansion grows as κ2 ∝ 10P . Initially,
the conditioning of the equi-spaced Lagrange basis is relatively good; however, after about
P ≈ 5 the condition number also starts to grow as κ2 ∝ 10P . In contrast, the Legendre
basis is very well conditioned for all values of P . This is because the L2 matrix norm for
a real symmetric matrix is the ratio of the maximum to minimum eigenvalues and so the
condition number for the Legendre mass matrix is exactly κ2 = 2P + 1.

The poor conditioning of the moment and Lagrange expansion reflects the fact that the
basis is becoming numerically linearly dependent. This is particularly evident for ΦA

p (x) as
shown in the top plot of figure 1.4(a), where we have plotted the even moment expansion
modes as a function of x, for different polynomial orders p. We observe that the mode for
p = 8 is practically indistinguishable from the mode when p = 10. Although each mode of
ΦB

p (x) is clearly distinguishable from the other in the middle plot of figure 1.4(a), the poor

κ2 = ||M||2||M−1||2
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Figure 6: Shape of modal Legendre expansion modes for a polynomial order of P = 5.

The reason why Legendre polynomials – even though they are by definition orthogonal
and give rise to well conditioned matrices – are not favoured in the continuous Galerkin
method is that the C0 requirement couples all the degrees of freedom in one element with
the modes of the adjacent element thereby destroying the orthogonality of the global
matrix. However, the DG method does not require C0 continuity and, consequently,
the Legendre polynomials is a widely adopted modal expansion in one-dimensional DG
methods. The Legendre expansion simply reads:

φp(ξ) !→ Lp(ξ) ≡ P (0,0)
p (ξ) , 0 ≤ p ≤ P . (18)

Figure 6 shows the shape of the expansion modes for P = 5. We note that in contrast to
the modal expansion in eq. (17) the modes cannot be divided into interior and boundary
modes as all expansions have values %= 0 at the ends of the domain.

2.2.2 Nodal expansions: spectral elements

Polynomial nodal expansions are based upon the Lagrange polynomials which are as-
sociated with a set of nodal points, hence the name nodal. Nodal expansions are non-
hierarchical and consist of P + 1 expansions of order P .

As mentioned, the Lagrange polynomial hp(ξ) of order P has P + 1 nodal points
denoted by ξq (0 ≤ q ≤ P ) and exhibits the collocation property that hp(ξq) = δpq. This
property implies that for an expansion of the form

uδ(ξ) =
P∑

p=0

ũphp(ξ) ,

the expansion coefficient ũp can be interpreted in terms of approximate solution at the
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Figure 6: Shape of modal Legendre expansion modes for a polynomial order of P = 5.

The reason why Legendre polynomials – even though they are by definition orthogonal
and give rise to well conditioned matrices – are not favoured in the continuous Galerkin
method is that the C0 requirement couples all the degrees of freedom in one element with
the modes of the adjacent element thereby destroying the orthogonality of the global
matrix. However, the DG method does not require C0 continuity and, consequently,
the Legendre polynomials is a widely adopted modal expansion in one-dimensional DG
methods. The Legendre expansion simply reads:

φp(ξ) !→ Lp(ξ) ≡ P (0,0)
p (ξ) , 0 ≤ p ≤ P . (18)

Figure 6 shows the shape of the expansion modes for P = 5. We note that in contrast to
the modal expansion in eq. (17) the modes cannot be divided into interior and boundary
modes as all expansions have values %= 0 at the ends of the domain.

2.2.2 Nodal expansions: spectral elements

Polynomial nodal expansions are based upon the Lagrange polynomials which are as-
sociated with a set of nodal points, hence the name nodal. Nodal expansions are non-
hierarchical and consist of P + 1 expansions of order P .

As mentioned, the Lagrange polynomial hp(ξ) of order P has P + 1 nodal points
denoted by ξq (0 ≤ q ≤ P ) and exhibits the collocation property that hp(ξq) = δpq. This
property implies that for an expansion of the form

uδ(ξ) =
P∑

p=0

ũphp(ξ) ,

the expansion coefficient ũp can be interpreted in terms of approximate solution at the
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2 Spectral/hp elements in one-dimension

In this section we will cover all the fundamental concepts needed for creating a spec-
tral/hp element model in the one-dimensional space.

In a spectral/hp elemental discretisation we can apply a polynomial expansion of
arbitrary order within each element. Since the order is arbitrary we need automatic
procedures to:

• compute polynomial expansions;

• numerically evaluate integrals and derivatives.

2.1 Polynomials

2.1.1 Jacobi polynomials

Jacobi polynomials are a family of polynomial solutions to the singular Sturm-Liouville
problem in the region (−1 ≤ x ≤ 1). We denote a nth order Jacobi polynomial by

P (α,β)
n (x), where α, β > −1, and some well-known Jacobi polynomials include the Leg-

endre polynomials (α = β = 0) and the Chebychev polynomials (α = β = −1/2).
An important property of the Jacobi polynomials is their orthogonal relationship

∫ 1

−1

(1 − x)α(1 + x)βP α,β
n (x)P α,β

i (x) dξ = Cδni , (10)

where δni is the Kronecker delta and C depends on α, β and n:

C =
2α+β+1

2n + α + β + 1

Γ(n + α + 1)Γ(n + β + 1)

n!Γ(n + α + β + 1)
. (11)

This implies that P α,β
n (x) is orthogonal to all polynomials of order less than n when

integrated with respect to the function (1 − x)α(1 + x)β.
Jacobi polynomials can be constructed through a three-term recursion relationship:

P α,β
0 (x) = 1 ,

P α,β
1 (x) =

1

2
[α − β + (α + β + 2)x] ,

a1
nP α,β

n+1(x) =
(
a2

n + a3
nx

)
P α,β

n (x) − a4
nP α,β

n−1(x) , (12)

where

a1
n = 2(n + 1)(n + α + β + 1)(2n + α + β) ,

a2
n = (2n + α + β + 1)(α2 − β2) ,

a3
n = (2n + α + β)(2n + α + β + 1)(2n + α + β + 2) ,

a4
n = 2(n + α)(n + β)(2n + α + β + 2) .

The derivative can be computed from:

b1
n(x)

d

dx
P α,β

n (x) = b2
n(x)P α,β

n (x) + b3
nP α,β

n−1(x) , (13)

b1
n(x) = (2n + α + β)(1 − x2) ,

b2
n(x) = n[α − β − (2n + α + β)x] ,

b3
n = 2(n + α)(n + β) .
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Another very useful expression relates the derivative of a nth order Jacobi polynomial
to a (n − 1)th order polynomial, i.e.

d

dx
P α,β

n (x) =
1

2
(α + β + n + 1)P α+1,β+1

n−1 (x) . (14)

2.1.2 Lagrange polynomials

Given a set of Q points, denoted by xq (0 ≤ q ≤ Q− 1), the Lagrange polynomial hp(x)
is the unique polynomial of order P which has unit value at xp and is zero at xq, i.e.

hp(xq) = δpq . (15)

The Lagrange polynomial can also be written in product form as

hp(x) =

∏Q−1
q=0,q "=p(x − xq)

∏Q−1
q=0,q "=p(xp − xq)

. (16)

The functions defined by eq. (16) are also known as cardinal functions. The Kronecker
delta property of the Lagrange polynomial makes it highly suitable as an interpolation
basis. Denoting a function of order P as f(x), the Lagrange interpolant through the Q
points xq is written as

If(x) =
Q−1∑

p=0

f̃php(x) .

The Kronecker delta property implies that the coefficient f̃p can be defined in terms of
the interpolant at the point xp since

If(xq) =
Q−1∑

p=0

f̃php(xq) =
Q−1∑

p=0

f̃pδpq = f̃q.

The coefficients therefore represent the interpolant at the points xp. The points xp are
referred to as nodes or nodal points.

Subsequently, the interpolation requires that If(xp) = f(xp) resulting in

If(x) =
Q−1∑

p=0

f(xp)hp(x) .

The interpolation is exact providing Q ≥ P + 1.

2.2 One-dimensional expansions in the standard region

The polynomial expansions are defined in the standard region, Ωst, given by

Ωst = {ξ|− 1 ≤ ξ ≤ 1} ,

where ξ throughout these notes will denote the local coordinate.
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6.2 Boundary Interior Decomposition of p-Type

Modes

• “Best” choice for our expansion appears to be the Legendre

polynomial.

• But also want to combine the expansion with the h-type elemental

decomposition.

• Difficulty arises when we try to ensure a degree of continuity in the

global expansion at elemental boundaries.

• Numerically efficient way of achieving C0 continuity is to design an

expansion where only some modes have a magnitude at elemental

boundary

• This type of decomposition is known as boundary and interior

decomposition.
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Figure 5: Shape of standard modal p-type expansion modes for a polynomial order of P = 5.

2.2.1 Modal expansions: p-type finite elements

As mentioned previously a modal expansion is a hierarchical expansion in which the
expansion of order P is contained within the expansion of order P + 1. The modal basis
is usually constructed using Jacobi polynomials and for continuous Galerkin methods
the most commonly used p-type modal expansion is defined as:

φp(ξ) !→ ψp(ξ) =






(
1 − ξ

2

)
p = 0

(
1 − ξ

2

) (
1 + ξ

2

)
P 1,1

p−1(ξ) 0 < p < P

(
1 + ξ

2

)
p = P

. (17)

•

2.2.2 Nodal expansions: spectral elements

• Expansion is based upon the Lagrange polynomials which are associated with a set of
nodal points.

• Nodal points must include the ends of the domain if the expansion is to be decom-
posed into boundary and interior modes.

• Choice of interior points important in the stability of the approximation and the
conditioning of the system.

• Nodal points placed at the zeros of the Gauss-Legendre-Lobatto integration rule.
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Figure 5: Shape of standard modal p-type expansion modes for a polynomial order of P = 5.

2.2.1 Modal expansions: p-type finite elements

As mentioned previously a modal expansion is a hierarchical expansion in which the
expansion of order P is contained within the expansion of order P + 1. The modal basis
is usually constructed using Jacobi polynomials and for continuous Galerkin methods
the most commonly used p-type modal expansion is defined as:

φp(ξ) !→ ψp(ξ) =






(
1 − ξ

2

)
p = 0

(
1 − ξ

2

) (
1 + ξ

2

)
P 1,1

p−1(ξ) 0 < p < P

(
1 + ξ

2

)
p = P

. (17)

•

2.2.2 Nodal expansions: spectral elements

• Expansion is based upon the Lagrange polynomials which are associated with a set of
nodal points.

• Nodal points must include the ends of the domain if the expansion is to be decom-
posed into boundary and interior modes.

• Choice of interior points important in the stability of the approximation and the
conditioning of the system.

• Nodal points placed at the zeros of the Gauss-Legendre-Lobatto integration rule.
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Another very useful expression relates the derivative of a nth order Jacobi polynomial
to a (n − 1)th order polynomial, i.e.

d

dx
P α,β

n (x) =
1

2
(α + β + n + 1)P α+1,β+1

n−1 (x) . (14)

2.1.2 Lagrange polynomials

Given a set of Q points, denoted by xq (0 ≤ q ≤ Q− 1), the Lagrange polynomial hp(x)
is the unique polynomial of order P which has unit value at xp and is zero at xq, i.e.

hp(xq) = δpq . (15)

The Lagrange polynomial can also be written in product form as

hp(x) =

∏Q−1
q=0,q "=p(x − xq)

∏Q−1
q=0,q "=p(xp − xq)

. (16)

The functions defined by eq. (16) are also known as cardinal functions. The Kronecker
delta property of the Lagrange polynomial makes it highly suitable as an interpolation
basis. Denoting a function of order P as f(x), the Lagrange interpolant through the Q
points xq is written as

If(x) =
Q−1∑

p=0

f̃php(x) .

The Kronecker delta property implies that the coefficient f̃p can be defined in terms of
the interpolant at the point xp since

If(xq) =
Q−1∑

p=0

f̃php(xq) =
Q−1∑

p=0

f̃pδpq = f̃q.

The coefficients therefore represent the interpolant at the points xp. The points xp are
referred to as nodes or nodal points.

Subsequently, the interpolation requires that If(xp) = f(xp) resulting in

If(x) =
Q−1∑

p=0

f(xp)hp(x) .

The interpolation is exact providing Q ≥ P + 1.

2.2 One-dimensional expansions in the standard region

The polynomial expansions are defined in the standard region, Ωst, given by

Ωst = {ξ|− 1 ≤ ξ ≤ 1} ,

where ξ throughout these notes will denote the local coordinate.

2-2



Nektar++ Notes section: 1.3.4.2

Spectral/hp element methods Sec. 2: Spectral/hp elements in 1D

Another very useful expression relates the derivative of a nth order Jacobi polynomial
to a (n − 1)th order polynomial, i.e.

d

dx
P α,β

n (x) =
1

2
(α + β + n + 1)P α+1,β+1

n−1 (x) . (14)

2.1.2 Lagrange polynomials

Given a set of Q points, denoted by xq (0 ≤ q ≤ Q− 1), the Lagrange polynomial hp(x)
is the unique polynomial of order P which has unit value at xp and is zero at xq, i.e.

hp(xq) = δpq . (15)

The Lagrange polynomial can also be written in product form as

hp(x) =

∏Q−1
q=0,q "=p(x − xq)

∏Q−1
q=0,q "=p(xp − xq)

. (16)

The functions defined by eq. (16) are also known as cardinal functions. The Kronecker
delta property of the Lagrange polynomial makes it highly suitable as an interpolation
basis. Denoting a function of order P as f(x), the Lagrange interpolant through the Q
points xq is written as

If(x) =
Q−1∑

p=0

f̃php(x) .

The Kronecker delta property implies that the coefficient f̃p can be defined in terms of
the interpolant at the point xp since

If(xq) =
Q−1∑

p=0

f̃php(xq) =
Q−1∑

p=0

f̃pδpq = f̃q.

The coefficients therefore represent the interpolant at the points xp. The points xp are
referred to as nodes or nodal points.

Subsequently, the interpolation requires that If(xp) = f(xp) resulting in

If(x) =
Q−1∑

p=0

f(xp)hp(x) .

The interpolation is exact providing Q ≥ P + 1.

2.2 One-dimensional expansions in the standard region

The polynomial expansions are defined in the standard region, Ωst, given by

Ωst = {ξ|− 1 ≤ ξ ≤ 1} ,

where ξ throughout these notes will denote the local coordinate.
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Figure 8: Shape of Lagrange nodal expansions through the Gauss-Lobatto points for a poly-
nomial order of P = 5.

gives the expansion:

φp(ξ) !→ hgl
p (ξ) =






1 , ξ = ξp ,

(ξ − 1)(ξ + 1)
∂LP (ξ)

∂ξ
P (P + 1)LP (ξp)(ξp − ξ)

, otherwise ,

0 ≤ p ≤ P . (20)

The shape of the hgl
p bases are shown in Figure 8 and from comparing Figures 7 and

8 it may seem that there is little or no difference between using equi-spaced or Gauss-
Lobatto nodes. However, when P → ∞ the equi-spaced Lagrange expansion starts to
experience Runge oscillations at the ends of the domain, as can be seen from Figure 9.
This does not happen for the Lagrange expansion through the Gauss-Lobatto-Legendre
points (see Figure 10), and the consequence is that the equi-spaced expansion leads to a
bad conditioning of the mass matrix.

2.3 Elemental operations

2.3.1 Mapping

Elemental operations are easier to implement when performed in a standard region.
Hence, in the standard spectral/hp element method the elements are mapped into the
standard region, Ωst = {ξ | − 1 ≤ ξ ≤ 1}, where ξ denotes the local coordinate. Letting
x denote the global coordinate, the eth element is defined as

Ωe = {x | xe
l ≤ x ≤ xe

u} ,
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gives the expansion:

φp(ξ) !→ hgl
p (ξ) =






1 , ξ = ξp ,

(ξ − 1)(ξ + 1)
∂LP (ξ)

∂ξ
P (P + 1)LP (ξp)(ξp − ξ)

, otherwise ,

0 ≤ p ≤ P . (20)

The shape of the hgl
p bases are shown in Figure 8 and from comparing Figures 7 and

8 it may seem that there is little or no difference between using equi-spaced or Gauss-
Lobatto nodes. However, when P → ∞ the equi-spaced Lagrange expansion starts to
experience Runge oscillations at the ends of the domain, as can be seen from Figure 9.
This does not happen for the Lagrange expansion through the Gauss-Lobatto-Legendre
points (see Figure 10), and the consequence is that the equi-spaced expansion leads to a
bad conditioning of the mass matrix.

2.3 Elemental operations

2.3.1 Mapping

Elemental operations are easier to implement when performed in a standard region.
Hence, in the standard spectral/hp element method the elements are mapped into the
standard region, Ωst = {ξ | − 1 ≤ ξ ≤ 1}, where ξ denotes the local coordinate. Letting
x denote the global coordinate, the eth element is defined as

Ωe = {x | xe
l ≤ x ≤ xe

u} ,
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Another very useful expression relates the derivative of a nth order Jacobi polynomial
to a (n − 1)th order polynomial, i.e.

d

dx
P α,β

n (x) =
1

2
(α + β + n + 1)P α+1,β+1

n−1 (x) . (14)

2.1.2 Lagrange polynomials

Given a set of Q points, denoted by xq (0 ≤ q ≤ Q− 1), the Lagrange polynomial hp(x)
is the unique polynomial of order P which has unit value at xp and is zero at xq, i.e.

hp(xq) = δpq . (15)

The Lagrange polynomial can also be written in product form as

hp(x) =

∏Q−1
q=0,q "=p(x − xq)

∏Q−1
q=0,q "=p(xp − xq)

. (16)

The functions defined by eq. (16) are also known as cardinal functions. The Kronecker
delta property of the Lagrange polynomial makes it highly suitable as an interpolation
basis. Denoting a function of order P as f(x), the Lagrange interpolant through the Q
points xq is written as

If(x) =
Q−1∑

p=0

f̃php(x) .

The Kronecker delta property implies that the coefficient f̃p can be defined in terms of
the interpolant at the point xp since

If(xq) =
Q−1∑

p=0

f̃php(xq) =
Q−1∑

p=0

f̃pδpq = f̃q.

The coefficients therefore represent the interpolant at the points xp. The points xp are
referred to as nodes or nodal points.

Subsequently, the interpolation requires that If(xp) = f(xp) resulting in

If(x) =
Q−1∑

p=0

f(xp)hp(x) .

The interpolation is exact providing Q ≥ P + 1.

2.2 One-dimensional expansions in the standard region

The polynomial expansions are defined in the standard region, Ωst, given by

Ωst = {ξ|− 1 ≤ ξ ≤ 1} ,

where ξ throughout these notes will denote the local coordinate.
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Figure 7: Shape of Lagrange nodal expansions through the equi-spaced points for a polyno-
mial order of P = 5.

point ξp since

uδ(ξq) =
P∑

p=0

ũphp(ξq) =
P∑

p=0

ũpδpq = ũq.

The coefficients therefore have a physical interpretation in that they represent the ap-
proximate solution at the points ξq. The points ξq are referred to as nodes or nodal
points. Linear finite elements are an example of a nodal expansion where the nodes are
at the ends of the domain.

For a C0 method the nodal points must include the ends of the domain in order to
decompose the expansion into boundary and interior modes. Apart from this restriction,
which can be relaxed for a DG method, we are free to choose the location of the interior
nodal points. The choice of these points, however, plays an important role in the stability
of the approximation and the conditioning of the system.

Taking the Lagrange polynomial

φp(ξ) !→ hp(ξ) , (19)

and choosing equi-spaced nodal points, i.e. ξq = (2q/P ) − 1 for 0 ≤ q ≤ P gives
an expansion as illustrated in Figure 7. Here we observe that the Lagrange expansion
satisfies the Kronecker delta property. Furthermore, unlike the modal expansions shown
in Figures 5 and 6, all modes are polynomials of order P . The boundary modes are φ0(ξ)
and φ5(ξ).

The spectral element method use the Lagrange polynomials through the zeros of the
Gauss-Lobatto quadrature points (see section 2.3.2). Patera [3] used Chebyshev poly-
nomials but later Legendre polynomials were adopted. Using the Legendre polynomials
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Figure 9: Lagrange nodal expansions through the equi-spaced points for polynomial orders of
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Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.

4-2
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Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
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expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.

4-2
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Notes section: 2.1.1
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expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.

4-2

Tensor product bases & sum factorisation
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Notes section: 3.1.6.2
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Figure 2.6 Standard regions for the (a) quadrilateral, and (b) triangular expansion in terms of
the Cartesian coordinates ξ1, ξ2.

tationally non-symmetric and have been applied to structural mechanics problems. Webb
and Abouchacra 91 have also developed a hierarchical triangular expansion based on Jacobi
polynomials, which is also rotationally non-symmetric and uses a barycentric coordinate
system. Finally, Zambusch 96 has proposed a symmetric hierarchical expansion for trian-
gular and tetrahedral regions based on the barycentric coordinates system but these bases
depend on defining a new polynomial space; this basis has also been applied in the area of
structural mechanics.

To understand the derivation of the generalised tensor product modal expansion we ini-
tially require the definition of a new collapsed coordinate system as introduced in section
2.2.1. Using the collapsed coordinate system we can then construct orthogonal polynomial
expansions within both simplex regions and the standard quadrilateral and hexahedral re-
gions as discussed in section 2.2.2. Finally, since the orthogonal expansions cannot easily be
tessellated into C0 expansions, we discuss in section 2.2.3 a set of modified expansions which
have an interior and boundary decomposition making them suitable for use in a global C0

continuous expansion.

2.2.1 Coordinate Systems

In the structured expansions discussed in section 2.1 we generated a multidimensional ex-
pansion by forming a tensor product of one-dimensional expansions based on a Cartesian
coordinate system. The one-dimensional expansion was defined between constant limits and
therefore an implicit assumption of the tensor extension was that the coordinates in the
two-dimensional region were bounded between constant limits. As illustrated in figure 2.6,
within the standard quadrilateral region, the Cartesian coordinates (ξ1, ξ2) are bounded by
constant limits, that is,

Q2 = {(ξ1, ξ2)|− 1 ≤ ξ1, ξ2 ≤ 1}.

However, as shown in figure 2.6(b), this is not the case in the standard triangular region as
the bounds of the Cartesian coordinates (ξ1, ξ2) are dependent upon each other, that is,

T 2 = {(ξ1, ξ2)|− 1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0}.

Therefore, to develop a suitable tensorial type basis within unstructured regions, such as
the triangle, we need to develop a coordinate system where the local coordinates have
independent bounds. The advantage of such a system is that we can then define one-
dimensional functions upon which we can construct our multi-domain tensorial basis. It also
defines an appropriate system upon which we can perform important numerical operations
such as integration and differentiation, as discussed in sections 1.4.1 and 1.4.2.

l2 =
A2

A

l1 =
A1

A
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Figure 2.10 (a)The area coordinate system in the standard triangular region. Each coordinate
l1, l2, and l3 can be interpreted as the ratio of areas A1, A2, and A3 over the total area. (b) The
standard tetrahedral region for the definition of volume coordinates.

which makes the tensor process construction of expansions, as discused in sections 2.1 and
2.2, very difficult if not impossible. Barycentric coordinates will however be useful in defin-
ing the rotationally symmetric non-tensorial expansions discussed in this section. We also
define the relationship between the barycentric coordinates and volume coordinates and the
collapsed coordinate systems discussed in sections 2.2.1.1 and 2.2.1.2

The area coordinate system is illustrated in figure 2.10(a) for the standard triangle. Any
point in the triangle is described by three coordinates l1, l2, and l3, which can be interpreted
as the ratio of the areas A1, A2 and A3 over the total area A = A1 + A2 + A3, that is,

l1 =
A1

A
, l2 =

A2

A
, l3 =

A3

A
.

Therefore l1, l2, and l3 have a unit value at the vertices marked 1, 2 and 3 in figure 2.10(a),
respectively. By definition these coordinates satisfy the relationship:

l1 + l2 + l3 = 1,

and they can be expressed in terms of Cartesian coordinates ξ1, ξ2 as:

l1 = 1
2 (1 − ξ1) − 1

2 (1 + ξ2),

l2 = 1
2 (1 + ξ1),

l3 = 1
2 (1 + ξ2).

The two-dimensional collapsed coordinate system was defined in sections 2.2.1.1 and 2.2.1.2
as

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1 and η2 = ξ2,

which can also be written in terms of the area coordinates as:

η1 =
2l2

1 − l3
− 1 =

l2 − l1
1 − l3

, η2 = 2l3 − 1.

A similar construction follows for volume coordinates l1, l2, l3, l4, which are defined as
having a unit value at the vertices marked 1, 2, 3, 4 in figure 2.10(b). In terms of the local
Cartesian coordinates the volume coordinate system is defined as:

l1 =
−(1 + ξ1 + ξ2 + ξ3)

2
, l2 =

(1 + ξ1)

2
,

l3 =
(1 + ξ2)

2
, l4 =

(1 + ξ3)

2
.

3 coordinates in 
2 dimensions

(rotationally symmetric)

Barycentric/Area
system }

l3 =
A3
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Figure 2.7 Triangle to rectangle transformation.

2.2.1.1 Collapsed Two-Dimensional Coordinate System

A suitable coordinate system, which describes the triangular region between constant inde-
pendent limits, is defined by the transformation

η1 = 2
(1 + ξ1)

(1− ξ2)
− 1 (2.4)

η2 = ξ2,

and has the inverse transformation

ξ1 =
(1 + η1)(1 − η2)

2
− 1 (2.5)

ξ2 = η2.

These new local coordinates (η1, η2) define the standard triangular region by

T 2 = {(η1, η2)|− 1 ≤ η1, η2 ≤ 1}.

The definition of the triangular region in terms of the coordinate system (η1, η2) is identi-
cal to the definition of the standard quadrilateral region in terms of the Cartesian coordinates
(ξ1, ξ2). This suggests that we can interpret the transformation (2.4) as a mapping from the
triangular region to a rectangular one as illustrated in figure 2.7. For this reason, we shall
refer to the coordinate system (η1, η2) as the collapsed coordinate system. The transforma-
tion (2.4) maps the vertical lines in the rectangular domain (lines of constant η1) onto lines
radiating out of the top vertex (ξ1 = −1, ξ2 = 1) in the triangular domain. The triangular
region is now described by a “ray” coordinate, η1, and the standard horizontal coordinate
by (ξ2 = η2). Another consequence of the transformation is that the “ray” coordinate (η1)
is multi-valued at (ξ1 = −1, ξ2 = 1). However, we can show that η1 is bounded at this point
by making a change of variables to (ε, θ) where ξ1 = −1 + ε sin θ, ξ2 = 1 − ε cos θ. This
change of variables simply expresses the Cartesian coordinates ξ1, ξ2 in terms of a cylindri-
cal system (ε, θ) centered on the singular points (ξ1 = −1, ξ2 = 1), where θ is defined in an
anti-clockwise sense from the vertical, as indicated in figure 2.7. Substituting these values
into the definition of η1 given by equation (2.4) we can determine the limiting behavior of
the singularity as ε → 0, that is,

η1|ξ1=−1,ξ2=1 = 2
1 − 1 + ε sin θ

1 − 1 + ε cos θ
− 1 = 2 tan θ − 1.

Since 0 ≤ θ ≤ π/4 we know that 0 ≤ tan θ ≤ 1 and so −1 ≤ η1|ξ1=−1,ξ2=1 ≤ 1. Although
the introduction of a singularity may seem unfavorable, such singularities naturally occur in
cylindrical and spherical coordinate systems.

This type of coordinate system is sometimes referred to as Duffy coordinates 28 and is
used in boundary element methods to handle the singular integrals.
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expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.
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Figure 2.7 Triangle to rectangle transformation.

2.2.1.1 Collapsed Two-Dimensional Coordinate System

A suitable coordinate system, which describes the triangular region between constant inde-
pendent limits, is defined by the transformation

η1 = 2
(1 + ξ1)

(1− ξ2)
− 1 (2.4)

η2 = ξ2,

and has the inverse transformation

ξ1 =
(1 + η1)(1 − η2)

2
− 1 (2.5)

ξ2 = η2.

These new local coordinates (η1, η2) define the standard triangular region by

T 2 = {(η1, η2)|− 1 ≤ η1, η2 ≤ 1}.

The definition of the triangular region in terms of the coordinate system (η1, η2) is identi-
cal to the definition of the standard quadrilateral region in terms of the Cartesian coordinates
(ξ1, ξ2). This suggests that we can interpret the transformation (2.4) as a mapping from the
triangular region to a rectangular one as illustrated in figure 2.7. For this reason, we shall
refer to the coordinate system (η1, η2) as the collapsed coordinate system. The transforma-
tion (2.4) maps the vertical lines in the rectangular domain (lines of constant η1) onto lines
radiating out of the top vertex (ξ1 = −1, ξ2 = 1) in the triangular domain. The triangular
region is now described by a “ray” coordinate, η1, and the standard horizontal coordinate
by (ξ2 = η2). Another consequence of the transformation is that the “ray” coordinate (η1)
is multi-valued at (ξ1 = −1, ξ2 = 1). However, we can show that η1 is bounded at this point
by making a change of variables to (ε, θ) where ξ1 = −1 + ε sin θ, ξ2 = 1 − ε cos θ. This
change of variables simply expresses the Cartesian coordinates ξ1, ξ2 in terms of a cylindri-
cal system (ε, θ) centered on the singular points (ξ1 = −1, ξ2 = 1), where θ is defined in an
anti-clockwise sense from the vertical, as indicated in figure 2.7. Substituting these values
into the definition of η1 given by equation (2.4) we can determine the limiting behavior of
the singularity as ε → 0, that is,

η1|ξ1=−1,ξ2=1 = 2
1 − 1 + ε sin θ

1 − 1 + ε cos θ
− 1 = 2 tan θ − 1.

Since 0 ≤ θ ≤ π/4 we know that 0 ≤ tan θ ≤ 1 and so −1 ≤ η1|ξ1=−1,ξ2=1 ≤ 1. Although
the introduction of a singularity may seem unfavorable, such singularities naturally occur in
cylindrical and spherical coordinate systems.

This type of coordinate system is sometimes referred to as Duffy coordinates 28 and is
used in boundary element methods to handle the singular integrals.
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Therefore, to develop a suitable tensorial type basis within a triangular region we need
to develop a coordinate system where the local coordinates have independent bounds.
The advantage of such a system is that we can then define one-dimensional functions upon
which we can construct our multi-domain tensorial basis. It also defines an appropriate
system upon which we can perform important numerical operations such as integration
and differentiation. We therefore introduce the so-called collapsed coordinate system
(η1 , η2). The transformation, is shown in Figure 18, and the mapping from (ξ1 , ξ2) →
(η1 , η2) is defined by

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1 , η2 = ξ2 ,

The standard triangle can now be defined in terms of collapsed coordinates as

Tst = {(η1 , η2)|− 1 ≤ η1 , η2 ≤ 1} ,

which has independent limits. The transformation to collapsed coordinates can also be
interpreted as a mapping to a standard quadrilateral region (see Figure 18). The inverse
transformation from (η1 , η2) → (ξ1 , ξ2) is defined as

ξ1 =
(1 + η1)(1 − η2)

2
− 1 , ξ2 = η2 .

4.1.4 PKD orthogonal expansion

An orthogonal, generalised tensor product, two-dimensional basis has been proposed by
several authors, the first of which we believe to be Proriol in 1957 [27]. This basis has
also been independently proposed by Karlin and McGregor [28] and Koornwinder [29],
as well as more recently by Dubiner [30]. This expansion, which we will refer to as
the PKD expansion, is also known to be solution to a singular Sturm-Liouville problem
[31, 32, 33, 34].

Recalling that the function P α,β
p (z) denotes the pth-order Jacobi polynomial intro-

duced in section 2.1.1, the principal functions, ψ̃a
p(z), ψ̃b

pq(z), for orthogonal expansions
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2.2.1.1 Collapsed Two-Dimensional Coordinate System

A suitable coordinate system, which describes the triangular region between constant inde-
pendent limits, is defined by the transformation

η1 = 2
(1 + ξ1)

(1− ξ2)
− 1 (2.4)

η2 = ξ2,

and has the inverse transformation

ξ1 =
(1 + η1)(1 − η2)

2
− 1 (2.5)

ξ2 = η2.

These new local coordinates (η1, η2) define the standard triangular region by

T 2 = {(η1, η2)|− 1 ≤ η1, η2 ≤ 1}.

The definition of the triangular region in terms of the coordinate system (η1, η2) is identi-
cal to the definition of the standard quadrilateral region in terms of the Cartesian coordinates
(ξ1, ξ2). This suggests that we can interpret the transformation (2.4) as a mapping from the
triangular region to a rectangular one as illustrated in figure 2.7. For this reason, we shall
refer to the coordinate system (η1, η2) as the collapsed coordinate system. The transforma-
tion (2.4) maps the vertical lines in the rectangular domain (lines of constant η1) onto lines
radiating out of the top vertex (ξ1 = −1, ξ2 = 1) in the triangular domain. The triangular
region is now described by a “ray” coordinate, η1, and the standard horizontal coordinate
by (ξ2 = η2). Another consequence of the transformation is that the “ray” coordinate (η1)
is multi-valued at (ξ1 = −1, ξ2 = 1). However, we can show that η1 is bounded at this point
by making a change of variables to (ε, θ) where ξ1 = −1 + ε sin θ, ξ2 = 1 − ε cos θ. This
change of variables simply expresses the Cartesian coordinates ξ1, ξ2 in terms of a cylindri-
cal system (ε, θ) centered on the singular points (ξ1 = −1, ξ2 = 1), where θ is defined in an
anti-clockwise sense from the vertical, as indicated in figure 2.7. Substituting these values
into the definition of η1 given by equation (2.4) we can determine the limiting behavior of
the singularity as ε → 0, that is,

η1|ξ1=−1,ξ2=1 = 2
1 − 1 + ε sin θ

1 − 1 + ε cos θ
− 1 = 2 tan θ − 1.

Since 0 ≤ θ ≤ π/4 we know that 0 ≤ tan θ ≤ 1 and so −1 ≤ η1|ξ1=−1,ξ2=1 ≤ 1. Although
the introduction of a singularity may seem unfavorable, such singularities naturally occur in
cylindrical and spherical coordinate systems.

This type of coordinate system is sometimes referred to as Duffy coordinates 28 and is
used in boundary element methods to handle the singular integrals.
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Therefore, to develop a suitable tensorial type basis within a triangular region we need
to develop a coordinate system where the local coordinates have independent bounds.
The advantage of such a system is that we can then define one-dimensional functions upon
which we can construct our multi-domain tensorial basis. It also defines an appropriate
system upon which we can perform important numerical operations such as integration
and differentiation. We therefore introduce the so-called collapsed coordinate system
(η1 , η2). The transformation, is shown in Figure 18, and the mapping from (ξ1 , ξ2) →
(η1 , η2) is defined by

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1 , η2 = ξ2 ,

The standard triangle can now be defined in terms of collapsed coordinates as

Tst = {(η1 , η2)|− 1 ≤ η1 , η2 ≤ 1} ,

which has independent limits. The transformation to collapsed coordinates can also be
interpreted as a mapping to a standard quadrilateral region (see Figure 18). The inverse
transformation from (η1 , η2) → (ξ1 , ξ2) is defined as

ξ1 =
(1 + η1)(1 − η2)

2
− 1 , ξ2 = η2 .

4.1.4 PKD orthogonal expansion

An orthogonal, generalised tensor product, two-dimensional basis has been proposed by
several authors, the first of which we believe to be Proriol in 1957 [27]. This basis has
also been independently proposed by Karlin and McGregor [28] and Koornwinder [29],
as well as more recently by Dubiner [30]. This expansion, which we will refer to as
the PKD expansion, is also known to be solution to a singular Sturm-Liouville problem
[31, 32, 33, 34].

Recalling that the function P α,β
p (z) denotes the pth-order Jacobi polynomial intro-

duced in section 2.1.1, the principal functions, ψ̃a
p(z), ψ̃b

pq(z), for orthogonal expansions

4-3

Ch. 2 Multi-dimensional Expansion Bases 63

!2

(0,0)

(!1,1)

"1=#1 "1=0 "1=1

(1,!1)(!1,!1)

"2

"1

(0,0)

(!1,1)

(1,!1)(!1,!1)

(1,1)

"1=1"1=0"1=#1

!1

"2 = !2

2
!1= 

(1+"1)(1#"2) #1

"1= 2
 (1+!1)  #1
(1#!2) 

$
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2.2.1.1 Collapsed Two-Dimensional Coordinate System

A suitable coordinate system, which describes the triangular region between constant inde-
pendent limits, is defined by the transformation

η1 = 2
(1 + ξ1)

(1− ξ2)
− 1 (2.4)

η2 = ξ2,

and has the inverse transformation

ξ1 =
(1 + η1)(1 − η2)

2
− 1 (2.5)

ξ2 = η2.

These new local coordinates (η1, η2) define the standard triangular region by

T 2 = {(η1, η2)|− 1 ≤ η1, η2 ≤ 1}.

The definition of the triangular region in terms of the coordinate system (η1, η2) is identi-
cal to the definition of the standard quadrilateral region in terms of the Cartesian coordinates
(ξ1, ξ2). This suggests that we can interpret the transformation (2.4) as a mapping from the
triangular region to a rectangular one as illustrated in figure 2.7. For this reason, we shall
refer to the coordinate system (η1, η2) as the collapsed coordinate system. The transforma-
tion (2.4) maps the vertical lines in the rectangular domain (lines of constant η1) onto lines
radiating out of the top vertex (ξ1 = −1, ξ2 = 1) in the triangular domain. The triangular
region is now described by a “ray” coordinate, η1, and the standard horizontal coordinate
by (ξ2 = η2). Another consequence of the transformation is that the “ray” coordinate (η1)
is multi-valued at (ξ1 = −1, ξ2 = 1). However, we can show that η1 is bounded at this point
by making a change of variables to (ε, θ) where ξ1 = −1 + ε sin θ, ξ2 = 1 − ε cos θ. This
change of variables simply expresses the Cartesian coordinates ξ1, ξ2 in terms of a cylindri-
cal system (ε, θ) centered on the singular points (ξ1 = −1, ξ2 = 1), where θ is defined in an
anti-clockwise sense from the vertical, as indicated in figure 2.7. Substituting these values
into the definition of η1 given by equation (2.4) we can determine the limiting behavior of
the singularity as ε → 0, that is,

η1|ξ1=−1,ξ2=1 = 2
1 − 1 + ε sin θ

1 − 1 + ε cos θ
− 1 = 2 tan θ − 1.

Since 0 ≤ θ ≤ π/4 we know that 0 ≤ tan θ ≤ 1 and so −1 ≤ η1|ξ1=−1,ξ2=1 ≤ 1. Although
the introduction of a singularity may seem unfavorable, such singularities naturally occur in
cylindrical and spherical coordinate systems.

This type of coordinate system is sometimes referred to as Duffy coordinates 28 and is
used in boundary element methods to handle the singular integrals.
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Therefore, to develop a suitable tensorial type basis within a triangular region we need
to develop a coordinate system where the local coordinates have independent bounds.
The advantage of such a system is that we can then define one-dimensional functions upon
which we can construct our multi-domain tensorial basis. It also defines an appropriate
system upon which we can perform important numerical operations such as integration
and differentiation. We therefore introduce the so-called collapsed coordinate system
(η1 , η2). The transformation, is shown in Figure 18, and the mapping from (ξ1 , ξ2) →
(η1 , η2) is defined by

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1 , η2 = ξ2 ,

The standard triangle can now be defined in terms of collapsed coordinates as

Tst = {(η1 , η2)|− 1 ≤ η1 , η2 ≤ 1} ,

which has independent limits. The transformation to collapsed coordinates can also be
interpreted as a mapping to a standard quadrilateral region (see Figure 18). The inverse
transformation from (η1 , η2) → (ξ1 , ξ2) is defined as

ξ1 =
(1 + η1)(1 − η2)

2
− 1 , ξ2 = η2 .

4.1.4 PKD orthogonal expansion

An orthogonal, generalised tensor product, two-dimensional basis has been proposed by
several authors, the first of which we believe to be Proriol in 1957 [27]. This basis has
also been independently proposed by Karlin and McGregor [28] and Koornwinder [29],
as well as more recently by Dubiner [30]. This expansion, which we will refer to as
the PKD expansion, is also known to be solution to a singular Sturm-Liouville problem
[31, 32, 33, 34].

Recalling that the function P α,β
p (z) denotes the pth-order Jacobi polynomial intro-

duced in section 2.1.1, the principal functions, ψ̃a
p(z), ψ̃b

pq(z), for orthogonal expansions

4-3

Ch. 2 Multi-dimensional Expansion Bases 63

!2

(0,0)

(!1,1)

"1=#1 "1=0 "1=1

(1,!1)(!1,!1)

"2

"1

(0,0)

(!1,1)

(1,!1)(!1,!1)

(1,1)

"1=1"1=0"1=#1

!1

"2 = !2

2
!1= 

(1+"1)(1#"2) #1

"1= 2
 (1+!1)  #1
(1#!2) 

$
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2.2.1.1 Collapsed Two-Dimensional Coordinate System

A suitable coordinate system, which describes the triangular region between constant inde-
pendent limits, is defined by the transformation

η1 = 2
(1 + ξ1)

(1− ξ2)
− 1 (2.4)

η2 = ξ2,

and has the inverse transformation

ξ1 =
(1 + η1)(1 − η2)

2
− 1 (2.5)

ξ2 = η2.

These new local coordinates (η1, η2) define the standard triangular region by

T 2 = {(η1, η2)|− 1 ≤ η1, η2 ≤ 1}.

The definition of the triangular region in terms of the coordinate system (η1, η2) is identi-
cal to the definition of the standard quadrilateral region in terms of the Cartesian coordinates
(ξ1, ξ2). This suggests that we can interpret the transformation (2.4) as a mapping from the
triangular region to a rectangular one as illustrated in figure 2.7. For this reason, we shall
refer to the coordinate system (η1, η2) as the collapsed coordinate system. The transforma-
tion (2.4) maps the vertical lines in the rectangular domain (lines of constant η1) onto lines
radiating out of the top vertex (ξ1 = −1, ξ2 = 1) in the triangular domain. The triangular
region is now described by a “ray” coordinate, η1, and the standard horizontal coordinate
by (ξ2 = η2). Another consequence of the transformation is that the “ray” coordinate (η1)
is multi-valued at (ξ1 = −1, ξ2 = 1). However, we can show that η1 is bounded at this point
by making a change of variables to (ε, θ) where ξ1 = −1 + ε sin θ, ξ2 = 1 − ε cos θ. This
change of variables simply expresses the Cartesian coordinates ξ1, ξ2 in terms of a cylindri-
cal system (ε, θ) centered on the singular points (ξ1 = −1, ξ2 = 1), where θ is defined in an
anti-clockwise sense from the vertical, as indicated in figure 2.7. Substituting these values
into the definition of η1 given by equation (2.4) we can determine the limiting behavior of
the singularity as ε → 0, that is,

η1|ξ1=−1,ξ2=1 = 2
1 − 1 + ε sin θ

1 − 1 + ε cos θ
− 1 = 2 tan θ − 1.

Since 0 ≤ θ ≤ π/4 we know that 0 ≤ tan θ ≤ 1 and so −1 ≤ η1|ξ1=−1,ξ2=1 ≤ 1. Although
the introduction of a singularity may seem unfavorable, such singularities naturally occur in
cylindrical and spherical coordinate systems.

This type of coordinate system is sometimes referred to as Duffy coordinates 28 and is
used in boundary element methods to handle the singular integrals.

Analogous system used in cylindrical coordinate system 

Notes section: 2.2.1.1



Nektar++

64 Spectral/hp Element Methods for CFD Ch. 2

!
1

!
2

!
3

!
3

"
1

"
2

"
3

"
2

"
3

31
(1#" )

2

(1+" )

" 3

! 3

3

2

! 2

"
1

"
1

"
1

!
1

21
!1=

2

(1+" ) (1#" )

"
2

3

2

!1=

=

2(1+"
 ) (1#

" )

=

!1

2
!

(1#! )
=
2

!1
(1+! )

Figure 2.8 Hexahedron to tetrahedron transformation by repeatedly applying the rectangle-to–
triangle mapping (2.5).

2.2.1.2 Collapsed Three-Dimensional Coordinate Systems

The interpretation of a triangle to rectangle mapping of the two-dimensional local coordinate
system, as illustrated in figure 2.7, is helpful in the construction of a new coordinate system
for three-dimensional regions. If we consider the local coordinates (η1, η2) as independent
axes (although they are not orthogonal) then the coordinate system spans a rectangular
region. Therefore, if we start with a hexahedral region and apply the inverse transformation
(2.5) we can derive a new local coordinate system in the tetrahedral region T 3 in three
dimensions, where T 3 is defined as:

T 3 = {(ξ1, ξ2, ξ3)|− 1 ≤ ξ1, ξ2, ξ3; ξ1 + ξ2 + ξ3 ≤ −1}.

To reduce the hexahedron to a tetrahedron requires repeated application of the transfor-
mation (2.5) as illustrated in figure 2.8. Initially, we consider a hexahedral domain defined
in terms of the local coordinate system (η1, η2, η3) where all three coordinates are bounded
by constant limits, that is, (−1 ≤ η1, η2, η3 ≤ 1). Applying the rectangle-to-triangle trans-
formation (2.5) in the (η1, η3) plane we obtain a new ordinate, η1, such that

η1 =
(1 + η1)(1 − η3)

2
− 1

η3 = η3.

Treating the coordinates (η1, η2, η3) as independent, the region which originally spanned a
hexahedral domain is mapped to a triangular prism. If we now apply transformation (2.5)
in the (η2, η3) plane, introducing the ordinates ξ2, ξ3 defined as

ξ2 =
(1 + η2)(1 − η3)

2
− 1,

ξ3 = η3,
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Figure 2.9 Planes of constant value of the local collapsed Cartesian coordinate systems in the
hexahedral, prismatic, pyramidic, and tetrahedral domains. In all but the hexahedral domain, the
standard Cartesian coordinates ξ1, ξ2, ξ3 describing the region have an upper bound which couples
the coordinate system as shown in table 2.2. The local collapsed Cartesian coordinate system
η1, η1, η2, η3 represents a system of non-orthogonal coordinates which are bounded by a constant
value within the region.
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Figure 19: Construction of two-dimensional expansion modes φpq(ξ1, ξ2) within a triangular

region using the product of a one-dimensional tensor ψ̃a
p(η1(ξ1, ξ2)) and a two-

dimensional tensor ψ̃b
pq(η2(ξ2)).

in hybrid domains are:

ψ̃a
p(z) = P 0,0

p (z), ψ̃b
pq(z) =

(
1−z
2

)p
P 2p+1,0

q (z).

The two-dimensional expansions in terms of the principal functions can now be defined
as:

• Quadrilateral expansion: φpq(ξ1, ξ2) = ψ̃a
p(ξ1)ψ̃a

q (ξ2), 0 ≤ p, q,≤ P

• Triangular expansion: φpq(ξ1, ξ2) = ψ̃a
p(η1)ψ̃b

pq(η2) , 0 ≤ p, p + q ≤ P,

where

η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

are the two-dimensional collapsed coordinates illustrated in Figure 18. The shape of all
the triangular modes for a fourth-order polynomial expansion generated as a generalised
tensor product are shown in Figure 19.

These expansions are all polynomials in terms of both their local collapsed coordinates
and the Cartesian coordinates. The structured expansions in the quadrilateral domains
are simply standard tensor products of Legendre polynomials in terms of Cartesian
coordinates since P 0,0

p (z) = Lp(z). The development of unstructured expansions using
the local collapsed coordinate systems is linked to the use of the more general function
ψ̃b

pq(z). This function contain factors of the form
(

1−z
2

)n
, which are necessary to keep the

expansions as polynomials in terms of the Cartesian coordinates (ξ1, ξ2). For example,
the coordinate η1 in the triangular expansion necessitates the use of the function ψ̃b

pq(η2)

(where η2 = ξ2), which introduces a factor of
(

1−ξ2
2

)p
. The product of this factor with

ψ̃a
p(η1) is a polynomial function in ξ1 and ξ2.

4.1.5 C0 modified PKD expansion

In Dubine’s paper [30] he not only suggested an orthogonal expansion but also proposed
a modified basis for C0 continuous expansions. Although the orthogonality of the expan-
sions in section 4.1.4 is attractive, these expansions are not normally the most suitable
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are the two-dimensional collapsed coordinates illustrated in Figure 18. The shape of all
the triangular modes for a fourth-order polynomial expansion generated as a generalised
tensor product are shown in Figure 19.

These expansions are all polynomials in terms of both their local collapsed coordinates
and the Cartesian coordinates. The structured expansions in the quadrilateral domains
are simply standard tensor products of Legendre polynomials in terms of Cartesian
coordinates since P 0,0

p (z) = Lp(z). The development of unstructured expansions using
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, which are necessary to keep the
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(where η2 = ξ2), which introduces a factor of
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. The product of this factor with
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p(η1) is a polynomial function in ξ1 and ξ2.

4.1.5 C0 modified PKD expansion

In Dubine’s paper [30] he not only suggested an orthogonal expansion but also proposed
a modified basis for C0 continuous expansions. Although the orthogonality of the expan-
sions in section 4.1.4 is attractive, these expansions are not normally the most suitable
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Figure 18: Collapsed coordinate system.

Therefore, to develop a suitable tensorial type basis within a triangular region we need
to develop a coordinate system where the local coordinates have independent bounds.
The advantage of such a system is that we can then define one-dimensional functions upon
which we can construct our multi-domain tensorial basis. It also defines an appropriate
system upon which we can perform important numerical operations such as integration
and differentiation. We therefore introduce the so-called collapsed coordinate system
(η1 , η2). The transformation, is shown in Figure 18, and the mapping from (ξ1 , ξ2) →
(η1 , η2) is defined by

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1 , η2 = ξ2 ,

The standard triangle can now be defined in terms of collapsed coordinates as

Tst = {(η1 , η2)|− 1 ≤ η1 , η2 ≤ 1} ,

which has independent limits. The transformation to collapsed coordinates can also be
interpreted as a mapping to a standard quadrilateral region (see Figure 18). The inverse
transformation from (η1 , η2) → (ξ1 , ξ2) is defined as

ξ1 =
(1 + η1)(1 − η2)

2
− 1 , ξ2 = η2 .

4.1.4 PKD orthogonal expansion

An orthogonal, generalised tensor product, two-dimensional basis has been proposed by
several authors, the first of which we believe to be Proriol in 1957 [27]. This basis has
also been independently proposed by Karlin and McGregor [28] and Koornwinder [29],
as well as more recently by Dubiner [30]. This expansion, which we will refer to as
the PKD expansion, is also known to be solution to a singular Sturm-Liouville problem
[31, 32, 33, 34].

Recalling that the function P α,β
p (z) denotes the pth-order Jacobi polynomial intro-

duced in section 2.1.1, the principal functions, ψ̃a
p(z), ψ̃b

pq(z), for orthogonal expansions
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The two-dimensional expansions in terms of the principal functions can now be defined
as:
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q (ξ2), 0 ≤ p, q,≤ P
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pq(η2) , 0 ≤ p, p + q ≤ P,

where

η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

are the two-dimensional collapsed coordinates illustrated in Figure 18. The shape of all
the triangular modes for a fourth-order polynomial expansion generated as a generalised
tensor product are shown in Figure 19.

These expansions are all polynomials in terms of both their local collapsed coordinates
and the Cartesian coordinates. The structured expansions in the quadrilateral domains
are simply standard tensor products of Legendre polynomials in terms of Cartesian
coordinates since P 0,0

p (z) = Lp(z). The development of unstructured expansions using
the local collapsed coordinate systems is linked to the use of the more general function
ψ̃b

pq(z). This function contain factors of the form
(

1−z
2

)n
, which are necessary to keep the

expansions as polynomials in terms of the Cartesian coordinates (ξ1, ξ2). For example,
the coordinate η1 in the triangular expansion necessitates the use of the function ψ̃b

pq(η2)

(where η2 = ξ2), which introduces a factor of
(

1−ξ2
2

)p
. The product of this factor with

ψ̃a
p(η1) is a polynomial function in ξ1 and ξ2.

4.1.5 C0 modified PKD expansion

In Dubine’s paper [30] he not only suggested an orthogonal expansion but also proposed
a modified basis for C0 continuous expansions. Although the orthogonality of the expan-
sions in section 4.1.4 is attractive, these expansions are not normally the most suitable
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2 Spectral/hp elements in one-dimension

In this section we will cover all the fundamental concepts needed for creating a spec-
tral/hp element model in the one-dimensional space.

In a spectral/hp elemental discretisation we can apply a polynomial expansion of
arbitrary order within each element. Since the order is arbitrary we need automatic
procedures to:

• compute polynomial expansions;

• numerically evaluate integrals and derivatives.

2.1 Polynomials

2.1.1 Jacobi polynomials

Jacobi polynomials are a family of polynomial solutions to the singular Sturm-Liouville
problem in the region (−1 ≤ x ≤ 1). We denote a nth order Jacobi polynomial by

P (α,β)
n (x), where α, β > −1, and some well-known Jacobi polynomials include the Leg-

endre polynomials (α = β = 0) and the Chebychev polynomials (α = β = −1/2).
An important property of the Jacobi polynomials is their orthogonal relationship

∫ 1

−1

(1 − x)α(1 + x)βP α,β
n (x)P α,β

i (x) dξ = Cδni , (10)

where δni is the Kronecker delta and C depends on α, β and n:

C =
2α+β+1

2n + α + β + 1

Γ(n + α + 1)Γ(n + β + 1)

n!Γ(n + α + β + 1)
. (11)

This implies that P α,β
n (x) is orthogonal to all polynomials of order less than n when

integrated with respect to the function (1 − x)α(1 + x)β.
Jacobi polynomials can be constructed through a three-term recursion relationship:

P α,β
0 (x) = 1 ,

P α,β
1 (x) =

1

2
[α − β + (α + β + 2)x] ,

a1
nP α,β

n+1(x) =
(
a2

n + a3
nx

)
P α,β

n (x) − a4
nP α,β

n−1(x) , (12)

where

a1
n = 2(n + 1)(n + α + β + 1)(2n + α + β) ,

a2
n = (2n + α + β + 1)(α2 − β2) ,

a3
n = (2n + α + β)(2n + α + β + 1)(2n + α + β + 2) ,

a4
n = 2(n + α)(n + β)(2n + α + β + 2) .

The derivative can be computed from:

b1
n(x)

d

dx
P α,β

n (x) = b2
n(x)P α,β

n (x) + b3
nP α,β

n−1(x) , (13)

b1
n(x) = (2n + α + β)(1 − x2) ,

b2
n(x) = n[α − β − (2n + α + β)x] ,

b3
n = 2(n + α)(n + β) .
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expansions for a standard spectral/hp element discretisation. For example, if we are
using a standard Galerkin formulation, then the global expansion is normally required
to have C0 continuity between elemental domains. The work by Dubiner [30] first dis-
cussed the modification of the triangular orthogonal expansions of section 4.1.4 into a
semi-orthogonal expansion suitable to generate C0 continuous global expansions. The
modified semi-orthogonal expansion was subsequently extended to three-dimensions by
Sherwin and Karniadakis [35] and Sherwin [36]. We note, however, that the orthogonal
bases can still be useful when considering discontinuous Galerkin formulation.

An expansion amenable to enforcing C0 continuity globally can be developed by
decomposing the orthogonal expansions into interior and boundary contributions. We
will require that the interior modes (or bubble functions) are zero on the boundary of the
local elemental domain. The completeness of the expansion is then ensured by adding
boundary modes which consist of vertex and edge contributions. The vertex modes have
unit value at one vertex and decay to zero at all other vertices whilst edge modes have
local support along one edge and are zero on all other edges and vertices. Using this
decomposition, C0 continuity between elements can be enforced by matching similar
shaped boundary modes, see section 2.5 and in reference [4].

Analogous to orthogonal expansion, we define two principal modified functions de-
noted by ψa

i (z) and ψb
ij(z) (0 ≤ i ≤ I, 0 ≤ j ≤ J):

ψa
i (z) =






(
1−z
2

)
i = 0

(
1−z
2

) (
1+z
2

)
P 1,1

i−1(z) 1 ≤ i < I

(
1+z
2

)
i = I

, (43)

ψb
ij(z) =






ψa
j (z) i = 0, 0 ≤ j ≤ J

(
1−z
2

)i+1
1 ≤ i < I, j = 0

(
1−z
2

)i+1 (
1+z
2

)
P 2i+1,1

j−1 (z) 1 ≤ i < I, 1 ≤ j < J

ψa
j (z) i = I, 0 ≤ j ≤ J

, (44)

In the same way as the orthogonal expansions, the two-dimensional expansions can
now be defined in terms of the product of modified principal functions as:

• Quadrilateral expansion: φpq(ξ1, ξ2) = ψa
p(ξ1)ψa

q (ξ2) ,

• Triangular expansion: φpq(ξ1, ξ2) = ψa
p(η1)ψb

pq(η2) ,

where we recall that

η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

are the two-dimensional collapsed coordinates.
Figure 20 diagrammatically indicates the structure of the modified principal functions

ψa
i (z) and ψb

ij(z), as well as how the function ψa
i (z) is incorporated into ψb

ij(z). The
function ψa

i (z) has been decomposed into two linearly varying components and a function
which is zero at the end points. This function is identical to the one-dimensional modal
expansion that was used in the tensorial construction of the structured modal expansions.
The linearly varying components also generate the vertex modes which are identical to
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Figure 5: Shape of standard modal p-type expansion modes for a polynomial order of P = 5.

2.2.1 Modal expansions: p-type finite elements

As mentioned previously a modal expansion is a hierarchical expansion in which the
expansion of order P is contained within the expansion of order P + 1. The modal basis
is usually constructed using Jacobi polynomials and for continuous Galerkin methods
the most commonly used p-type modal expansion is defined as:

φp(ξ) !→ ψp(ξ) =






(
1 − ξ

2

)
p = 0

(
1 − ξ

2

) (
1 + ξ

2

)
P 1,1

p−1(ξ) 0 < p < P

(
1 + ξ

2

)
p = P

. (17)

•

2.2.2 Nodal expansions: spectral elements

• Expansion is based upon the Lagrange polynomials which are associated with a set of
nodal points.

• Nodal points must include the ends of the domain if the expansion is to be decom-
posed into boundary and interior modes.

• Choice of interior points important in the stability of the approximation and the
conditioning of the system.

• Nodal points placed at the zeros of the Gauss-Legendre-Lobatto integration rule.
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expansions for a standard spectral/hp element discretisation. For example, if we are
using a standard Galerkin formulation, then the global expansion is normally required
to have C0 continuity between elemental domains. The work by Dubiner [30] first dis-
cussed the modification of the triangular orthogonal expansions of section 4.1.4 into a
semi-orthogonal expansion suitable to generate C0 continuous global expansions. The
modified semi-orthogonal expansion was subsequently extended to three-dimensions by
Sherwin and Karniadakis [35] and Sherwin [36]. We note, however, that the orthogonal
bases can still be useful when considering discontinuous Galerkin formulation.

An expansion amenable to enforcing C0 continuity globally can be developed by
decomposing the orthogonal expansions into interior and boundary contributions. We
will require that the interior modes (or bubble functions) are zero on the boundary of the
local elemental domain. The completeness of the expansion is then ensured by adding
boundary modes which consist of vertex and edge contributions. The vertex modes have
unit value at one vertex and decay to zero at all other vertices whilst edge modes have
local support along one edge and are zero on all other edges and vertices. Using this
decomposition, C0 continuity between elements can be enforced by matching similar
shaped boundary modes, see section 2.5 and in reference [4].

Analogous to orthogonal expansion, we define two principal modified functions de-
noted by ψa

i (z) and ψb
ij(z) (0 ≤ i ≤ I, 0 ≤ j ≤ J):

ψa
i (z) =






(
1−z
2

)
i = 0

(
1−z
2

) (
1+z
2

)
P 1,1

i−1(z) 1 ≤ i < I

(
1+z
2

)
i = I

, (43)

ψb
ij(z) =






ψa
j (z) i = 0, 0 ≤ j ≤ J

(
1−z
2

)i+1
1 ≤ i < I, j = 0

(
1−z
2

)i+1 (
1+z
2

)
P 2i+1,1

j−1 (z) 1 ≤ i < I, 1 ≤ j < J

ψa
j (z) i = I, 0 ≤ j ≤ J

, (44)

In the same way as the orthogonal expansions, the two-dimensional expansions can
now be defined in terms of the product of modified principal functions as:

• Quadrilateral expansion: φpq(ξ1, ξ2) = ψa
p(ξ1)ψa

q (ξ2) ,

• Triangular expansion: φpq(ξ1, ξ2) = ψa
p(η1)ψb

pq(η2) ,

where we recall that

η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

are the two-dimensional collapsed coordinates.
Figure 20 diagrammatically indicates the structure of the modified principal functions

ψa
i (z) and ψb

ij(z), as well as how the function ψa
i (z) is incorporated into ψb

ij(z). The
function ψa

i (z) has been decomposed into two linearly varying components and a function
which is zero at the end points. This function is identical to the one-dimensional modal
expansion that was used in the tensorial construction of the structured modal expansions.
The linearly varying components also generate the vertex modes which are identical to
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p
q

 !pq("1,"2) = #p($1) #pq($2)
a b

"1

"2

q

p

#pq($2)
b

p
a#p($1)

Figure 21: Construction of a fourth-order (P = 4) triangular expansion using the product
of two modified principal functions ψa

p(η1) and ψb
pq(η2). As compared with the

orthogonal expansion shown in figure 19, the modes are now decomposed into
interior and boundary contributions where the boundary modes have similar forms
along each edge.

not discuss non-tensorial expansions in this chapter, it is worth highlighting that the
electro-static nodal points by Hesthaven[38], the Fekete points of Taylor and Wingate
[39] and the geometric Gauss-Lobatto-Legendre points of Blyth and Pozrikidis [40] have
all been applied in spectral element methods and are designed to match the quadrilateral
nodal expansions.

4.2 Elemental operations and global assembly

To apply the two-dimensional expansions outlined in section 4.1 we need to be able to
integrate, differentiate and possibly assemble the expansion into a globally continuous
expansion. In the following sections we outline the key components of these operations
which relate to the isoparametric mapping of elements to a standard region, determining
the mapping metrics and global assembly of the expansion.

4.2.1 Isoparametric mapping

In sections 2.3.2 and 2.3.3 we saw how to integrate and differentiate in one-dimension and
the tensor product definition of the two-dimensional basis provides a natural extension to
determine the two-dimensional operations in the standard region Ωst (see [4] for further
details). However, in a practical implementation we need to perform these operations
in the elemental regions, Ωe, which may be of a generalised shape and orientation as
illustrated in Figure 22. To consider these cases we need to define a one-to-one mapping
between the Cartesian coordinates (x1, x2) and the local Cartesian coordinates (ξ1, ξ2)
which we denoted as

x1 = χe
1(ξ1, ξ2), x2 = χe

2(ξ1, ξ2).

For elemental shapes with straight sides a simple mapping may be constructed using
the linear vertex modes of a modified hierarchical/modal expansion. For example, to
map a triangular region [as in figure 22(a)] assuming that the global coordinates of the
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• data: ◦ a list of local elemental expansions
• da for the classes ContExpList iD, ContField iD, DisContField iD:

• data: ◦ the global coefficients ûg

• data: ◦ a mapping array from the local to the global degrees of freedom

objects of these classes contain:

• da for the classes ContField iD, DisContField iD:
• data: ◦ information about the boundary conditions
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