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Figure 3.4 A general curved element can be described in terms of a series of parametric functions
fA(ξ1), fB(ξ2), fC(ξ1), and fD(ξ2). Representing these functions as a discrete expansion we can
construct an iso-parametric mapping χi(ξ1, ξ2) relating the standard region (ξ1, ξ2) to the deformed
region (x1, x2).

the hierarchical modal expansion. For example, a quadrilateral domain of the form shown
in figure 3.2(b) the mapping can be defined by equation (3.37).

We note that this simply involves the vertex modes of the modified hierarchical expansion
basis within a quadrilateral domain (see section 2.1.1). We could, therefore, have written
the expansion as
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The construction of a mapping based upon the expansion modes in this form can be
extended to include curved sided regions using an isoparametric representation. In this
technique the geometry is represented with an expansion of the same form and polynomial
order as the unknown variables.

To describe a straight-sided region we needed only to know the values of the vertex
locations. To describe a curved region, however, requires more information. As illustrated
in figure 3.4, we typically expect to have a definition of a mapping of the shape of each edge
in terms of the local coordinates which we denote as fA

i (ξ1), fB
i (ξ2), fC

i (ξ1) and fD
i (ξ2). The

process of defining the mapping functions can be considered as part of the mesh generation
process, the discussion of which is in section 3.3.3.

Knowing the definition of the edges (or faces in three-dimensions) a mapping for a
curvilinear domains can be determined using the isoparametric form of equation (3.38)
to include more non-zero expansion coefficients than simply the vertex contributions. In
two-dimensions we wish to use the coefficient along each edge of the element, and in three-
dimensions we can use the face coefficients as well. Along each edge we therefore need to
approximate the shape mapping fi(ξ) if it is not already represented by a polynomial of
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Spectral/hp element methods Sec. 2: Spectral/hp elements in 1D

Here wα,β
p are the quadrature weights and ξp are the Q quadrature points or abscissas in

the interval −1 ≤ ξ ≤ 1. The quadrature points are given as the zeros of the Jacobi
polynomial P α,β

p (ξ). The most common quadrature is the Gaussian quadrature in which
the integrand is represented by a Lagrange expansion. Let us now assume f(ξ) to be a
polynomial of order 2Q− k (where k is an integer to be determined), then we write the
decomposition as

f(ξ) =
Q−1∑

p=0

f(ξp)hp(ξ) + s(ξ)r(ξ) , (26)

where hp(ξ) is the Lagrangian polynomial of order Q− 1 through the Q nodal points ξp,
and giving hp(ξq) = δpq. The polynomial s(ξ) is of order Q through the same ξp nodal
points, so s(ξp) = 0. Finally, r(ξ) is the remainder polynomial of order Q − k.

Substituting (26) into (25), we obtain

∫ 1

−1

(1 − ξ)α(1 + ξ)βf(ξ)dξ =
Q−1∑

p=0

wα,β
p f(ξp) + R(f) ,

where

wα,β
i =

∫ 1

−1

(1 − ξ)α(1 + ξ)βhp(ξ)dξ , (27)

R(f) =

∫ 1

−1

(1 − ξ)α(1 + ξ)βs(ξ)r(ξ)dξ ,

in which R(f) is the integration error. If we know the location of the zeros ξp, eq. (27)
defines the quadrature weights wp. Taking equi-spaced points the integration is exact,
R(f) = 0, providing that f(ξ) is of order Q − 1 or less. However, it is much better to
specify s(ξ) as a Jacobi polynomial instead of specifying the nodal points, as we then
can utilise the orthogonality relationship for Jacobi polynomials. Setting s(ξ) to P α,β

Q (ξ)
gives

R(f) =

∫ 1

−1

(1 − ξ)α(1 + ξ)βP α,β
Q r(ξ)dξ .

Recalling eq. (10) R(f) = 0 if r(ξ) is a polynomial of order Q − 1. This corresponds
to k = 1 which defines a classical Gauss quadrature. The three well-known quadratures
hence correspond to:

• Gauss quadrature is obtained if k = 1. Gauss quadrature use zeros which lie inside
the domain, −1 < ξp < 1 for p = 0, . . . , Q − 1. Gauss quadrature is exact for f(ξ)
being a polynomial order P ≤ 2Q − 1;

• Gauss-Radau quadrature is given by k = 2. This quadrature uses one point at the
end of the domain, usually ξ0 = −1. The rest lie inside the domain, −1 < ξp < 1
for p = 1, . . . , Q−1. Gauss-Radau quadrature is exact for f(ξ) being a polynomial
order P ≤ 2Q − 2;

• Gauss-Lobatto quadrature is defined by k = 3. Here both end-points of the domain
are used, ξ0 = −1 and ξQ−1 = 1. The remaining zeros lie inside the domain,
−1 < ξi < 1 for i = 1, . . . , Q−2. Gauss-Lobatto quadrature is exact for f(ξ) being
a polynomial order P ≤ 2Q − 3.
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Numerical Integration: general segment
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and has the size he = xe
u − xe

l , see Figure 11 for notation. We can map Ωst to the
elemental region via the transformation χe(ξ). For an one-dimensional expansion the
most straightforward choice is a linear mapping of the form

x = χe(ξ) =
(1 − ξ)

2
xe

l +
(1 + ξ)

2
xe

u , ξ ∈ Ωst . (21)

This mapping has the inverse (χe)−1(x) giving ξ in terms of x as

ξ = (χe)−1(x) = 2
(x − xe

l )

(xe
u − xe

l )
− 1 , x ∈ Ωe . (22)

2.3.2 Numerical integration

In any finite element method we frequently have to evaluate integrals such as
∫

Ωe

f(x) dx , (23)

where f(x) may be a load function or, more often, a product of expansion bases f(x) =
φp(x) φq(x). First, this integral is mapped into the standard region

∫

Ωe

f(x) dx , =

∫ 1

−1

Je
1D f(ξ) dξ , (24)

where Je
1D = ∂x/∂ξ is the Jacobian of the mapping. Using the linear mapping (21) the

Jacobian is simply Je
1D = he/2. We will, however, now consider the more general integral

in the standard region ∫ 1

−1

(1 − ξ)α(1 + ξ)βf(ξ)dξ . (25)

Integrals of the form (25) appear in multi-dimensional bases and integrals of the form (24)
is included as the special case of α = β = 0, corresponding to the Legendre case. We
prefer to use numerical integration or quadrature for computing the integral in eq. (25),
i.e. the integral is approximated by a finite summation

∫ 1

−1

(1 − ξ)α(1 + ξ)βf(ξ)dξ ≈
Q−1∑

p=0

wα,β
p f(ξp) .
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(a) (b)

Figure 1.10 (a) Linear interpolation, Iu(x), of the function u(x) in the region 0 ≤ x ≤ l using a
uniform mesh with Nel = 6 elemental domains. Each element is of size h = l/Nel. (b) The linear
interpolant is exact at the end-points of every element and so there is a point σe where the error
ε̄ = u − Iu is a maximum.

Noting that that l = h · Nel, there is a constant K such that

(||ε̄||E)2 ≤ lKC2h2.

Due to the minimal property of the finite element solution, the error in the finite element
approximation ε = u − uδ is bounded by ε̄ and so

||ε||E ≤ ||ε̄||E ≤ K1Ch,

where C depends on f and λ but is independent of h.

1.5.2 L2 Error of the p-Type Interpolation in a Single Element

Following Gottlieb & Orszag 38 we now consider the approximation to a function u(ξ) in
the interval −1 ≤ ξ ≤ 1 by an expansion of Legendre polynomials, Lp(ξ) of order P , that is

uδ(ξ) =
P∑

p=0

ûpLp(ξ).

Since the Legendre polynomials are orthogonal in this interval a Galerkin projection to
determine the expansion coefficients implies that

ûp =
(Lp(ξ), u(ξ))

(Lp(ξ), Lp(ξ))
= (Lp(ξ), u(ξ)) , (1.55)

where we have assumed that the Legendre modes are orthonormalised so that (Lp(ξ), Lp(ξ)) =
1. Assuming the function u(ξ) can be represented by an infinite expansion the L2 error be-
tween our finite expansion after P terms is

||ε||2 =




∫ 1

−1

∣∣∣∣∣
u(ξ) −

P∑

p=0

ûpLp(ξ)

∣∣∣∣∣

2

dξ




1/2

=




∫ 1

−1

∣∣∣∣∣

∞∑

p=0

ûpLp(ξ) −
P∑

p=0

ûpLp(ξ)

∣∣∣∣∣

2

dξ




1/2

=




∞∑

p=P+1

û2
p




1/2

(1.56)
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where ξi is the Q discrete quadrature points or zeros at which the function u(ξ) is evaluated
and wi is the set of coefficients of weights. The term R(u) denotes the approximation
error which, providing a sufficient number of quadrature points are used, will be zero if the
integrand is a polynomial. For example, if u(ξ) represents the local expansion basis u(ξ) =
φp(ξ) then providing there are sufficient quadrature points there will be no approximation
error. We recall that the classical Gauss-Legendre quadrature does not include any zeros
at the ends of the interval. If both end-points are included the integration is referred to as
Gauss-Lobatto and if only one end-point is included the integration is referred to as Gauss-
Radau. A more general form of quadrature involving a weight function in the integrand is
referred to as Gauss-Jacobi (see appendix B).

3.1.1.1 Quadrilateral and Hexahedral Regions

A trivial extension of the one-dimensional Gaussian rule is to the two-dimensional standardImplementation.
note: Numerical
integration in Ωst:
quadrilateral and

hexahedral regions.

quadrilateral region and similarly to the three-dimensional hexahedral region. Integration
over Q2 = {−1 ≤ ξ1, ξ2 ≤ 1} is mathematically defined as two one-dimensional integrals of
the form ∫

Q2

u(ξ1, ξ2) dξ1 dξ2 =

∫ 1

−1

{∫ 1

−1
u(ξ1, ξ2)

∣∣∣∣
ξ2

dξ1

}

dξ2.

So if we replace the right-hand-side integrals with our one-dimensional Gaussian integration
rules we obtain

∫

Q2

u(ξ1, ξ2) dξ1 dξ2 #
Q1−1∑

i=0

wi






Q2−1∑

j=0

wj u(ξ1i, ξ2j)





,

where Q1 and Q2 are the number of quadrature points in the ξ1 and ξ2 directions, re-
spectively. This expression will be exact if u(ξ1, ξ2) is a polynomial and Q1, Q2 are chosen
appropriately. To numerically evaluate this expression the summation over ‘i’ must be per-
formed Q1 times at every ξ2i point, that is,

∫

Q2

u(ξ1, ξ2) dξ1 dξ2 #
Q1−1∑

i=0

wi f(ξ1i),

f(ξ1i) =
Q2−1∑

j=0

wj u(ξ1i, ξ2j).

The corresponding three-dimensional numerical integral for Q3 = {−1 ≤ ξ1, ξ2, ξ3 ≤ 1} is

∫

Q3

u(ξ1, ξ2, ξ3) dξ1 dξ2 dξ3 #
Q1−1∑

i=0

wi






Q2−1∑

j=0

wj

{
Q3−1∑

i=0

wku(ξ1i, ξ2j , ξ3k)

}



,

which is evaluated in a similar fashion to the two-dimensional case except that the innermost
summation must be evaluated Q1 ·Q2 times. Although any type of Gauss-Legendre quadra-
ture may be used, the preferred distributions include the end-points as boundary conditions
may then be more easily imposed.

3.1.1.2 Simplex and Hybrid Regions

Implementation.
note: Numerical
integration in Ωst:

simplex and hybrid
regions.

Triangular Region

Unlike the structured regions, the standard triangular regions T 2 = {−1 ≤ ξ1 ≤ ξ1, ξ2; ξ1 +
ξ2 ≤ 0} (see figure 2.6) expressed in Cartesian coordinates ξ1, ξ2 are not very conveniently

Course Notes: Section 3.1.1.1

-1,-1 1,-1

-1,1

ξ1

ξ2

∫

Q2
u(ξ1, ξ2) dξ1 dξ2 !

Q2−1∑

j=0

wj

{
Q1−1∑

i=0

wiu(ξ1i, ξ2j)

}

Q1 = Q2 = 5
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Figure 3.1 Quadrature points in the standard triangular T 2 and tetrahedral T 3 space with
Q1 = Q2 = Q3 = 7. In the “η1” direction a Gauss-Lobatto-Legendre distribution has been used
and in the “η2” and “η3” directions a Gauss-Radau-Jacobi distribution was used.

The Gauss-Jacobi rules are convenient in evaluating the integral (3.2) since we are able
to include the Jacobian term ∂(ξ1, ξ2)/∂(η1, η2) =

( 1−η2

2

)
directly in the quadrature weights

by setting α = 1, β = 0. Accordingly, the integration scheme over T 2 becomes:

∫ 1

−1

∫ 1

−1
u(η1, η2)

( 1−η2

2

)
dη1dη2 =

Q1−1∑

i=0

w0,0
i






Q2−1∑

j=0

ŵ1,0
j u(η1i, η2j)






where

ŵ1,0
j =

w1,0
j

2
.

The Gauss-Jacobi rule therefore uses fewer quadrature points than the standard Gauss-
Legendre quadrature rule to achieve an equivalent accuracy.

When choosing a distribution of points on which to integrate, the Lobatto-type quadra-
ture is preferred since it includes the end-points of the interval [−1, 1], which is helpful
when setting boundary conditions. However, when integrating over a triangular region we
note that the use of the Radau distribution in the η2 direction [which includes the point at
(η2 = −1)] is advantageous as it avoids the need for explicit calculation of any information at
the degenerate vertex (η1 = −1, η2 = 1). Although this vertex does not cause any problems
when integrating over T 2 it does present added complications when differentiating in T 2

(see section 3.1.2). The distribution of quadrature points in T 2 for Q1 = Q2 = 7 using a
Gauss-Lobatto-Legendre scheme in the η1 direction and a Gauss-Radau-Jacobi scheme in
the η2 direction is shown in figure 3.1.

Tetrahedral Region

To integrate over T 3 = {−1 ≤ ξ1, ξ2, ξ3; ξ1+ξ2+ξ3 ≤ −1} we use the collapsed Cartesian
coordinate system for the tetrahedron defined as

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
− 1, η2 =

2(1 + ξ2)

(1 − ξ3)
− 1, η3 = ξ3.

Using this system the integration becomes
∫

T 3

u(ξ1, ξ2, ξ3) dξ1dξ2dξ3 =

∫ 1

−1

∫ 1

−1

∫ 1

−1
u(η1, η2, η3)J dη1dη2dη3.

Integration: Standard Triangle
StdRegions::StdTriExp::Integral()
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represented in terms of one-dimensional Gaussian integration as the upper boundary of the
region is described in terms of both coordinates. Since the one-dimensional rule is expressed
in terms of an interval with constant bounds (that is, [-1,1]) we need to perform a coordinate
transformation before we can apply this technique.

The transformation of a triangular region into a region bounded by constants is equiva-
lent to mapping the triangular region into a quadrilateral as described in section 2.2.1. The
collapsed Cartesian system is therefore suitable for Gauss integration in the unstructured re-
gions. For modal expansions, integration in terms of the collapsed Cartesian system remains
accurate as the generalised tensorial bases are polynomials in both the Cartesian and the
collapsed Cartesian systems. Although alternative integration schemes using the barycentric
coordinate system (see section 2.2.1) have been developed by various researchers including

Dunavant 29 and Jinyun 95, this type of integration does not take advantage of the tensorial
construction of the unstructured basis as shown in section 3.1.6. The order of these schemes
also tends to be restricted by the numerical process of evaluating the quadrature weights.

The two-dimensional collapsed Cartesian system (see section 2.2.1) is defined by the
coordinate transformation:

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2.

If we express our integral over the region T 2, the collapsed Cartesian system (η1, η2), we
obtain

∫

T 2

u(ξ1, ξ2) dξ1dξ2 =

∫ 1

−1

∫ −ξ2

−1
u(ξ1, ξ2) dξ1dξ2

=

∫ 1

−1

∫ 1

−1
u(η1, η2)

∣∣∣∣
∂(ξ1, ξ2)

∂(η1, η2)

∣∣∣∣ dη1dη2, (3.1)

where ∂(ξ1, ξ2)/∂(η1, η2) is the Jacobian of the Cartesian to local coordinate transformation
and can be expressed in terms of η1, η2 by

∂(ξ1, ξ2)

∂(η1, η2)
=

(
1 − η2

2

)
.

The last term in equation (3.1) can be approximated using one-dimensional Gaussian quadra-
ture rules to arrive at

∫ 1

−1

∫ 1

−1
u(η1, η2)

( 1−η2

2

)
dη1dη2 =

Q1−1∑

i=0

wi






Q2−1∑

j=0

wj u(η1i, η2j)
(

1−η2j

2

)




(3.2)

where η1i, η2j are the quadrature points in the η1 and η2 directions. The weights wi and wj

used in equation (3.2) correspond to the standard Gauss-Legendre rule which may or may
not include the end-points. However, a more general quadrature rule, which we shall refer
to as Gauss-Jacobi quadrature, includes the factor (1− ξ)α(1+ ξ)β in the integrand, that is,

∫ 1

−1
(1 − ξ)α(1 + ξ)βu(ξ)dξ =

Q−1∑

i=0

wα,βu(ξα,β
i ),

where wα,β and ξα,β
i are the weights and zeros which correspond to the choice of the ex-

ponents α and β (see Ghizzetti and Ossicini 36). If (α = β = 0) we recover the standard
Gauss-Legendre quadrature rules. The Gauss-Jacobi quadrature rules can be derived for a
Lobatto and Radau distribution of zeros as well as the classical Gaussian distribution (see
appendix B).
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construction of the unstructured basis as shown in section 3.1.6. The order of these schemes
also tends to be restricted by the numerical process of evaluating the quadrature weights.

The two-dimensional collapsed Cartesian system (see section 2.2.1) is defined by the
coordinate transformation:

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2.

If we express our integral over the region T 2, the collapsed Cartesian system (η1, η2), we
obtain

∫

T 2

u(ξ1, ξ2) dξ1dξ2 =

∫ 1

−1

∫ −ξ2

−1
u(ξ1, ξ2) dξ1dξ2

=

∫ 1

−1

∫ 1

−1
u(η1, η2)

∣∣∣∣
∂(ξ1, ξ2)

∂(η1, η2)

∣∣∣∣ dη1dη2, (3.1)

where ∂(ξ1, ξ2)/∂(η1, η2) is the Jacobian of the Cartesian to local coordinate transformation
and can be expressed in terms of η1, η2 by

∂(ξ1, ξ2)

∂(η1, η2)
=

(
1 − η2

2

)
.

The last term in equation (3.1) can be approximated using one-dimensional Gaussian quadra-
ture rules to arrive at

∫ 1

−1

∫ 1

−1
u(η1, η2)

( 1−η2

2

)
dη1dη2 =

Q1−1∑

i=0

wi






Q2−1∑

j=0

wj u(η1i, η2j)
(

1−η2j

2

)




(3.2)

where η1i, η2j are the quadrature points in the η1 and η2 directions. The weights wi and wj

used in equation (3.2) correspond to the standard Gauss-Legendre rule which may or may
not include the end-points. However, a more general quadrature rule, which we shall refer
to as Gauss-Jacobi quadrature, includes the factor (1− ξ)α(1+ ξ)β in the integrand, that is,

∫ 1

−1
(1 − ξ)α(1 + ξ)βu(ξ)dξ =

Q−1∑

i=0

wα,βu(ξα,β
i ),

where wα,β and ξα,β
i are the weights and zeros which correspond to the choice of the ex-

ponents α and β (see Ghizzetti and Ossicini 36). If (α = β = 0) we recover the standard
Gauss-Legendre quadrature rules. The Gauss-Jacobi quadrature rules can be derived for a
Lobatto and Radau distribution of zeros as well as the classical Gaussian distribution (see
appendix B).
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where η1i, η2j are the quadrature points in the η1 and η2 directions. The weights wi and wj

used in equation (3.2) correspond to the standard Gauss-Legendre rule which may or may
not include the end-points. However, a more general quadrature rule, which we shall refer
to as Gauss-Jacobi quadrature, includes the factor (1− ξ)α(1+ ξ)β in the integrand, that is,
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where wα,β and ξα,β
i are the weights and zeros which correspond to the choice of the ex-

ponents α and β (see Ghizzetti and Ossicini 36). If (α = β = 0) we recover the standard
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Figure 3.1 Quadrature points in the standard triangular T 2 and tetrahedral T 3 space with
Q1 = Q2 = Q3 = 7. In the “η1” direction a Gauss-Lobatto-Legendre distribution has been used
and in the “η2” and “η3” directions a Gauss-Radau-Jacobi distribution was used.

The Gauss-Jacobi rules are convenient in evaluating the integral (3.2) since we are able
to include the Jacobian term ∂(ξ1, ξ2)/∂(η1, η2) =

( 1−η2

2

)
directly in the quadrature weights

by setting α = 1, β = 0. Accordingly, the integration scheme over T 2 becomes:

∫ 1

−1

∫ 1

−1
u(η1, η2)

( 1−η2

2

)
dη1dη2 =

Q1−1∑

i=0

w0,0
i






Q2−1∑

j=0

ŵ1,0
j u(η1i, η2j)






where

ŵ1,0
j =

w1,0
j

2
.

The Gauss-Jacobi rule therefore uses fewer quadrature points than the standard Gauss-
Legendre quadrature rule to achieve an equivalent accuracy.

When choosing a distribution of points on which to integrate, the Lobatto-type quadra-
ture is preferred since it includes the end-points of the interval [−1, 1], which is helpful
when setting boundary conditions. However, when integrating over a triangular region we
note that the use of the Radau distribution in the η2 direction [which includes the point at
(η2 = −1)] is advantageous as it avoids the need for explicit calculation of any information at
the degenerate vertex (η1 = −1, η2 = 1). Although this vertex does not cause any problems
when integrating over T 2 it does present added complications when differentiating in T 2

(see section 3.1.2). The distribution of quadrature points in T 2 for Q1 = Q2 = 7 using a
Gauss-Lobatto-Legendre scheme in the η1 direction and a Gauss-Radau-Jacobi scheme in
the η2 direction is shown in figure 3.1.

Tetrahedral Region

To integrate over T 3 = {−1 ≤ ξ1, ξ2, ξ3; ξ1+ξ2+ξ3 ≤ −1} we use the collapsed Cartesian
coordinate system for the tetrahedron defined as

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
− 1, η2 =

2(1 + ξ2)

(1 − ξ3)
− 1, η3 = ξ3.

Using this system the integration becomes
∫

T 3

u(ξ1, ξ2, ξ3) dξ1dξ2dξ3 =

∫ 1

−1

∫ 1

−1

∫ 1

−1
u(η1, η2, η3)J dη1dη2dη3.
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Figure 3.1 Quadrature points in the standard triangular T 2 and tetrahedral T 3 space with
Q1 = Q2 = Q3 = 7. In the “η1” direction a Gauss-Lobatto-Legendre distribution has been used
and in the “η2” and “η3” directions a Gauss-Radau-Jacobi distribution was used.
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when setting boundary conditions. However, when integrating over a triangular region we
note that the use of the Radau distribution in the η2 direction [which includes the point at
(η2 = −1)] is advantageous as it avoids the need for explicit calculation of any information at
the degenerate vertex (η1 = −1, η2 = 1). Although this vertex does not cause any problems
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Figure 22: To construct a C0 expansion from multiple elements of specified shapes (for ex-
ample, triangles or rectangles), each elemental region Ωe is mapped to a standard
region Ωst in which all local operations are evaluated.

triangle {(xA
1 , xA

2 ), (xB
1 , xB

2 ), (xC
1 , xC

2 )} are known (with C the collapsed vertex), we can
use

xi = χe
1(η1, η2) = xA

i

(1 − η1)

2

(1 − η2)

2

+xB
i

(1 + η1)

2

(1 − η2)

2
+ xC

i

(1 + η2)

2
, i = 1, 2. (45)

Equation (45) is expressed in terms of collapsed Cartesian coordinates but can easily be
expressed in terms of the Cartesian coordinates by recalling that (η1 = 2 (1+ξ1)

(1−ξ2) − 1, η2 =

ξ2), which on substitution into (45) gives:

xi = χ(ξ1, ξ2) = xA
i

(−ξ2 − ξ1)

2
+ xB

i

(1 + ξ1)

2
+ xC

i

(1 + ξ2)

2
. i = 1, 2 (46)

A similar approach leads to the bilinear mapping for an arbitrary shaped straight-
sided quadrilateral where only the vertices need to be prescribed. For the straight-sided
quadrilateral with vertices labelled as shown in figure 22(b) the mapping is:

xi = χ1(ξ1, ξ2) = xA
i

(1 − ξ1)

2

(1 − ξ2)

2
+ xB

i

(1 + ξ1)

2

(1 − ξ2)

2

+xD
i

(1 − ξ1)

2

(1 + ξ2)

2
+ xC

i

(1 + ξ1)

2

(1 + ξ2)

2
. i = 1, 2 (47)

Elements can also be curvilinear, although in this case some information about how
the edges are curved is also required. When this is known, we can define a more complex
elemental mapping, see [4] for further details.

4.2.2 Metric of the mapping

To perform integration and differentiation of a general element using the mapping to the
standard region we need to define appropriate metrics of the elemental mapping. We
start by denoting an arbitrary triangular or quadrilateral region by Ωe which is a function
of the global Cartesian coordinate system (x1, x2) in two-dimensions. To integrate over
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Ωe, we transform this region into the standard region Ωst, defined in terms of (ξ1, ξ2),
and we have ∫

Ωe

u(x1, x2) dx1 dx2 =

∫

Ωst

u(ξ1, ξ2)|J2D| dξ1 dξ2,

where J2D is the two-dimensional Jacobian due to the transformation, defined as:

J2D =

∣∣∣∣∣∣∣

∂x1

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ1

∂x2

∂ξ2

∣∣∣∣∣∣∣
=

∂x1

∂ξ1

∂x2

∂ξ2
−

∂x1

∂ξ2

∂x2

∂ξ1
. (48)

As we have assumed that we know the form of the mapping [i.e. x1 = χ1 (ξ1, ξ2),
x2 = χ2(ξ1, ξ2)], we can evaluate all the partial derivatives required to determine the
Jacobian using an analogous technique to that described in 2.3.3. If the elemental region
is straight-sided, then we have seen that a mapping from (x1, x2) → (ξ1, ξ2) is given
by equations (46) and (47). The simple form of these mappings means that the partial
derivatives, and therefore the Jacobian, are constant for quadrilateral regions with similar
shape and orientation to the standard region, as well as for all triangular regions. For
deformed regions the Jacobian may be evaluated and stored at the quadrature points.
This essentially represents the Jacobian as a polynomial function and can therefore
increase the polynomial order of the integrand.

To differentiate a function within the arbitrary region Ωe as illustrated in figure 22,
we again apply the chain rule which, for the 2D case, gives:

∇ =





∂

∂x1

∂

∂x2




=





∂ξ1

∂x1

∂

∂ξ1
+

∂ξ2

∂x1

∂

∂ξ2

∂ξ1

∂x2

∂

∂ξ1
+

∂ξ2

∂x2

∂

∂ξ2




. (49)

In section 2.3.3 we illustrated differentiation with respect to ξ1 and a similar approach can
be applied to the ξ2 direction. However we now also need to evaluate partial derivatives
of the form ∂ξ1/∂x1. For the linear mapping case given by equations (46) and (47) it
is possible to obtain an analytic formula, but in general we need a technique to handle
a curvilinear elemental region. To do this, we express the partial derivatives such as
∂ξ1/∂x1 in terms of partial derivatives with respect to ξ1, ξ2, which we already know how
to evaluate. For a general function dependent on two variables, u(ξ1, ξ2), we know from
the chain rule that the total change in u(ξ1, ξ2) is

du(ξ1, ξ2) =
∂u

∂ξ1
dξ1 +

∂u

∂ξ2
dξ2. (50)

If we replace u(ξ1, ξ2) by x1 = χ1(ξ1, ξ2) and x2 = χ2(ξ1, ξ2) we obtain the matrix
system




dx1

dx2



 =






∂x1

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ1

∂x2

∂ξ2









dξ1

dξ2



 ,
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Figure 22: To construct a C0 expansion from multiple elements of specified shapes (for ex-
ample, triangles or rectangles), each elemental region Ωe is mapped to a standard
region Ωst in which all local operations are evaluated.
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2 )} are known (with C the collapsed vertex), we can
use

xi = χe
1(η1, η2) = xA

i

(1 − η1)

2

(1 − η2)

2

+xB
i

(1 + η1)

2

(1 − η2)

2
+ xC

i

(1 + η2)

2
, i = 1, 2. (45)

Equation (45) is expressed in terms of collapsed Cartesian coordinates but can easily be
expressed in terms of the Cartesian coordinates by recalling that (η1 = 2 (1+ξ1)

(1−ξ2) − 1, η2 =

ξ2), which on substitution into (45) gives:

xi = χ(ξ1, ξ2) = xA
i

(−ξ2 − ξ1)

2
+ xB

i

(1 + ξ1)

2
+ xC

i

(1 + ξ2)

2
. i = 1, 2 (46)

A similar approach leads to the bilinear mapping for an arbitrary shaped straight-
sided quadrilateral where only the vertices need to be prescribed. For the straight-sided
quadrilateral with vertices labelled as shown in figure 22(b) the mapping is:

xi = χ1(ξ1, ξ2) = xA
i

(1 − ξ1)

2

(1 − ξ2)

2
+ xB

i

(1 + ξ1)

2

(1 − ξ2)

2

+xD
i

(1 − ξ1)

2

(1 + ξ2)

2
+ xC

i

(1 + ξ1)

2

(1 + ξ2)

2
. i = 1, 2 (47)

Elements can also be curvilinear, although in this case some information about how
the edges are curved is also required. When this is known, we can define a more complex
elemental mapping, see [4] for further details.

4.2.2 Metric of the mapping

To perform integration and differentiation of a general element using the mapping to the
standard region we need to define appropriate metrics of the elemental mapping. We
start by denoting an arbitrary triangular or quadrilateral region by Ωe which is a function
of the global Cartesian coordinate system (x1, x2) in two-dimensions. To integrate over
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Ωe, we transform this region into the standard region Ωst, defined in terms of (ξ1, ξ2),
and we have ∫

Ωe

u(x1, x2) dx1 dx2 =

∫

Ωst

u(ξ1, ξ2)|J2D| dξ1 dξ2,

where J2D is the two-dimensional Jacobian due to the transformation, defined as:

J2D =

∣∣∣∣∣∣∣

∂x1

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ1

∂x2

∂ξ2

∣∣∣∣∣∣∣
=

∂x1

∂ξ1

∂x2

∂ξ2
−

∂x1

∂ξ2

∂x2

∂ξ1
. (48)

As we have assumed that we know the form of the mapping [i.e. x1 = χ1 (ξ1, ξ2),
x2 = χ2(ξ1, ξ2)], we can evaluate all the partial derivatives required to determine the
Jacobian using an analogous technique to that described in 2.3.3. If the elemental region
is straight-sided, then we have seen that a mapping from (x1, x2) → (ξ1, ξ2) is given
by equations (46) and (47). The simple form of these mappings means that the partial
derivatives, and therefore the Jacobian, are constant for quadrilateral regions with similar
shape and orientation to the standard region, as well as for all triangular regions. For
deformed regions the Jacobian may be evaluated and stored at the quadrature points.
This essentially represents the Jacobian as a polynomial function and can therefore
increase the polynomial order of the integrand.

To differentiate a function within the arbitrary region Ωe as illustrated in figure 22,
we again apply the chain rule which, for the 2D case, gives:

∇ =





∂

∂x1

∂

∂x2




=





∂ξ1

∂x1

∂

∂ξ1
+

∂ξ2

∂x1

∂

∂ξ2

∂ξ1

∂x2

∂

∂ξ1
+

∂ξ2

∂x2

∂

∂ξ2




. (49)

In section 2.3.3 we illustrated differentiation with respect to ξ1 and a similar approach can
be applied to the ξ2 direction. However we now also need to evaluate partial derivatives
of the form ∂ξ1/∂x1. For the linear mapping case given by equations (46) and (47) it
is possible to obtain an analytic formula, but in general we need a technique to handle
a curvilinear elemental region. To do this, we express the partial derivatives such as
∂ξ1/∂x1 in terms of partial derivatives with respect to ξ1, ξ2, which we already know how
to evaluate. For a general function dependent on two variables, u(ξ1, ξ2), we know from
the chain rule that the total change in u(ξ1, ξ2) is

du(ξ1, ξ2) =
∂u

∂ξ1
dξ1 +

∂u

∂ξ2
dξ2. (50)

If we replace u(ξ1, ξ2) by x1 = χ1(ξ1, ξ2) and x2 = χ2(ξ1, ξ2) we obtain the matrix
system




dx1

dx2



 =






∂x1

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ1

∂x2

∂ξ2









dξ1

dξ2



 ,
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the global Cartesian coordinate system (x1, x2) in two-dimensions. To integrate over Ωe we
transform this region into the standard region Ωst defined in terms of (ξ1, ξ2) and we have

∫

Ωe

u(x1, x2) dx1 dx2 =

∫

Ωst

u(ξ1, ξ2)|J2D| dξ1 dξ2,

where J2D is the two-dimensional Jacobian due to the transformation, defined as:

J2D =

∣∣∣∣∣∣∣

∂x1

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ1

∂x2

∂ξ2

∣∣∣∣∣∣∣
=

∂x1

∂ξ1

∂x2

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1
. (3.41)

As we have assumed that we know the form of the mapping [i.e., x1 = χ1 (ξ1, ξ2), x2 =
χ2(ξ1, ξ2)] we can evaluate all the partial derivatives required to determine the Jacobian as
discussed in section 3.1.2. If the elemental region is straight-sided then we have seen that a
mapping from (x1, x2) → (ξ1, ξ2) is given by equations (3.36) and (3.37). The simple form of
these mappings means that the partial derivatives, and therefore the Jacobian, are constant
for quadrilateral regions with similar shape and orientation to the standard region, as well
as for all triangular regions. For deformed regions the Jacobian may be evaluated and stored
at the quadrature points. This essentially represents the Jacobian as a polynomial function
and can therefore increase the polynomial order of the integrand.

We note that integration over the triangular region now involves two transformations,
that is, (x1, x2) → (ξ1, ξ2) and (ξ1, ξ2) → (η1, η2). However, the second transformation
(ξ1, ξ2) → (η1, η2) may be absorbed entirely into the quadrature weights as discussed in
section 3.1.1. This is preferable since the polynomial order, which may be exactly integrated,
is higher. Having evaluated the Jacobian at the quadrature points, we multiply the integrand
by the Jacobian and evaluate the integral in the same manner as discussed in section 3.1.1.

Integration over a three-dimensional region Ωe is performed in an analogous fashion
where the three-dimensional Jacobian now has the form:

J3D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3

∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∂x1

∂ξ1

(
∂x2

∂ξ2

∂x3

∂ξ3
− ∂x2

∂ξ3

∂x3

∂ξ2

)

−∂x1

∂ξ2

(
∂x2

∂ξ1

∂x3

∂ξ3
− ∂x2

∂ξ3

∂x3

∂ξ1

)

+
∂x1

∂ξ3

(
∂x2

∂ξ1

∂x3

∂ξ2
− ∂x2

∂ξ2

∂x3

∂ξ1

)
.

(3.42)

3.1.3.4 Differentiation within a General Shaped Elemental Region

To differentiate a function within the arbitrary region Ωe as illustrated in figure 3.2 we once Formulation note:
Differentiation within
general region in terms
of local Cartesian
coordinates: Geometric
factors.

again apply the chain rule which, for the 2D case, gives:

∇ =





∂

∂x1

∂

∂x2




=





∂ξ1

∂x1

∂

∂ξ1
+

∂ξ2

∂x1

∂

∂ξ2

∂ξ1

∂x2

∂

∂ξ1
+

∂ξ2

∂x2

∂

∂ξ2




. (3.43)

In section 3.1.1 we illustrated differentiation with respect to ξ1 and ξ2 but we now also need
to evaluate partial derivatives of the form ∂ξ1/∂x1. For the linear mapping case given by
equations (3.36) and (3.37) it is possible to obtain an analytic formula, but in general we
need a technique to handle a curvilinear elemental region. To do this, we express the partial
derivatives such as ∂ξ1/∂x1 in terms of partial derivatives with respect to ξ1, ξ2, which we

∫

Ωe

u(x1, x2) dx1 dx2 !
Q2−1∑

j=0

wj

{
Q1−1∑

i=0

wi u(ξ1i, ξ2j)|J2D|(ξ1i, ξ2j)

}
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Figure 3.1 Quadrature points in the standard triangular T 2 and tetrahedral T 3 space with
Q1 = Q2 = Q3 = 7. In the “η1” direction a Gauss-Lobatto-Legendre distribution has been used
and in the “η2” and “η3” directions a Gauss-Radau-Jacobi distribution was used.

The Gauss-Jacobi rules are convenient in evaluating the integral (3.2) since we are able
to include the Jacobian term ∂(ξ1, ξ2)/∂(η1, η2) =

( 1−η2

2

)
directly in the quadrature weights

by setting α = 1, β = 0. Accordingly, the integration scheme over T 2 becomes:

∫ 1

−1

∫ 1

−1
u(η1, η2)

( 1−η2

2

)
dη1dη2 =

Q1−1∑

i=0

w0,0
i






Q2−1∑

j=0

ŵ1,0
j u(η1i, η2j)






where

ŵ1,0
j =

w1,0
j

2
.

The Gauss-Jacobi rule therefore uses fewer quadrature points than the standard Gauss-
Legendre quadrature rule to achieve an equivalent accuracy.

When choosing a distribution of points on which to integrate, the Lobatto-type quadra-
ture is preferred since it includes the end-points of the interval [−1, 1], which is helpful
when setting boundary conditions. However, when integrating over a triangular region we
note that the use of the Radau distribution in the η2 direction [which includes the point at
(η2 = −1)] is advantageous as it avoids the need for explicit calculation of any information at
the degenerate vertex (η1 = −1, η2 = 1). Although this vertex does not cause any problems
when integrating over T 2 it does present added complications when differentiating in T 2

(see section 3.1.2). The distribution of quadrature points in T 2 for Q1 = Q2 = 7 using a
Gauss-Lobatto-Legendre scheme in the η1 direction and a Gauss-Radau-Jacobi scheme in
the η2 direction is shown in figure 3.1.

Tetrahedral Region

To integrate over T 3 = {−1 ≤ ξ1, ξ2, ξ3; ξ1+ξ2+ξ3 ≤ −1} we use the collapsed Cartesian
coordinate system for the tetrahedron defined as

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
− 1, η2 =

2(1 + ξ2)

(1 − ξ3)
− 1, η3 = ξ3.

Using this system the integration becomes
∫

T 3

u(ξ1, ξ2, ξ3) dξ1dξ2dξ3 =

∫ 1

−1

∫ 1

−1

∫ 1

−1
u(η1, η2, η3)J dη1dη2dη3.
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Of the three above types of quadrature, Gauss-Lobatto-Legendre (α = β = 0) is the
most common 1D quadrature and the one we will present here. Let us by ξα,β

p,P denote

the P zeros of the Jacobi polynomial P α,β
P (ξ) such that

P α,β
p (ξα,β

p,P ) = 0 , p = 0, 1, . . . , P − 1 ,

where
ξα,β
0,P < ξα,β

1,P < . . . < ξα,β
P−1,P .

The zeros ξp are the given for the Gauss-Lobatto-Legendre quadrature as

ξp =






−1 p = 0

ξ1,1
p−1,P−2 p = 1, . . . , P − 2

−1 p = P − 1

,

while the weights wp read

wp =
2

P (P − 1)[LP−1(ξp)]2
, p = 0, . . . , P − 1 .

2.3.3 Collocation differentiation

Any expansion, modal as well as nodal, can be exactly represented in terms of Lagrange
polynomials. Considering a polynomial expansion in the eth elemental region expressed
in global coordinate uδ(x), we can use the chain rule to write

duδ(x)

dx
=

duδ(x)

dξ

dξ

dx
.

Now, recalling that χe(ξ) denotes the mapping ξ → x, the Lagrange expansion can be
written as

uδ(x) =
P∑

p=0

ũphp(χ
−1) =

P∑

p=0

ũphp(ξ) , x ∈ Ωe ,

giving

duδ(x)

dx
=

P∑

p=0

ũe
p

dhp(ξ)

dξ

dξ

dx
.

So in order to compute duδ(x)/dx we need to evaluate dhp(ξ)/dξ and dξ/dx. Using the
mapping defined in eq. (22), dξ/dx is a constant and simply equal to 2/he. Since La-
grange polynomials, as mentioned, are associated with nodal points in the physical space,
differentiation of this form is often referred to collocation differentiation or differentiation
in physical space.

We express a polynomial of order P by the Lagrange polynomials hi(ξ) through a
set of Q nodes ξi (0 ≤ i ≤ Q − 1). This is exact providing Q ≥ P + 1. Typically, we are
interested in computing the derivative at the nodes, i.e.

du(ξ)

dξ

∣∣∣∣
ξ=ξi

=
Q−1∑

j=0

diju(ξj) ,
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where the differentiation matrix dij is defined as

dij =
dhj(ξ)

dξ

∣∣∣∣
ξ=ξi

.

The most common choice of differentiation matrix is the one corresponding to the
Gauss-Lobatto-Legendre quadrature points. Denoting by ξα,β

i,P the P zeros of the Jacobi

polynomial P α,β
P (ξ) such that

P α,β
p (ξα,β

i,P ) = 0 , i = 0, 1, . . . , P − 1 ,

the differentiation matrix for the Gauss-Lobatto-Legendre points reads

ξi =






−1 i = 0

ξ1,1
i−1,Q−2 i = 1, . . . , Q − 2

−1 i = Q − 1

, (28)

dij =






−
Q(Q − 1)

4
i = j = 0

LQ−1(ξi)

LQ−1(ξj)(ξi − ξj)
i "= j, 0 ≤ i, j ≤ Q − 1

0 1 ≤ i = j ≤ Q − 2

Q(Q − 1)

4
i = j = Q − 1

. (29)

2.4 Structure of elemental matrices

2.4.1 Elemental mass matrix

The elemental mass matrix is defined as

Me[p][q] =

∫

Ωe

φp(x) φq(x) dx , (30)

where the square brackets are used to denote the pth row and qth column. Mapping the
element to the standard region introduces the Jacobian

Me[p][q] =

∫ 1

−1

Je
1D φp(ξ) φq(ξ)dξ . (31)

In Figure 12 we show the structure of the mass matrix for two modal bases: the clas-
sical modal basis (17) and the Legendre polynomial (18), as well as the nodal Lagrange
expansion through the Gauss-Lobatto-Legendre nodes (20).

For the classical modal expansion the mass matrix is penta-diagonal for the interior
modes. We write out the equation for the mass matrix’s interior components as:

Me[p][q] =

∫ 1

−1

Je
1D

(
1 − ξ

2

) (
1 + ξ

2

)
P 1,1

p−1(ξ) ψq(ξ)dξ , (32)
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Q = 12. From this figure it is evident that there is strong aliasing of the high mode energy
of the nonlinear term into the lower modes.

To understand why this is the case we can return to the inner product

(φq, N)Q =
Q−1∑

q=0

wiφp(ξi)N(ξi), (1.48)

where φq(ξ) is any polynomial basis such that φq ∈ PP and N(ξ) ∈ P2P . We can always ex-

pand N(ξ) in terms of Legendre polynomials such that N(ξ) =
∑2P

p=0 N̂pLp(ξ). Substituting
this form into equation (1.48) we observe that

(φq , N)Q = (φq,
P∑

p=0

N̂pLp)Q + (φq,
2P∑

p=P+1

N̂pLp)Q. (1.49)

If the quadrature order Q is sufficient for exact integration (i.e., Qmin > 3/2P+3/2) then the
last term (φq,

∑2P
p=P+1 N̂Lp)Q will be identically zero since the Legendre polynomial Lp(ξ)

for p > P is orthogonal to all polynomials of order P and less. However, if the numerical
quadrature is only sufficient for integration of the linear terms (i.e., Qmin > P + 3/2) then

the first part of the inner product, (φq ,
∑P

p=0 N̂Lp)Q, will be exactly integrated but the last
term will not. It is the contribution of this last term which leads to the aliasing of modal
energy seen in figure 1.9(a). To qualitatively appreciate why this is happening we can
consider figure 1.9(b) which shows the highest energetic Legendre mode, L20(ξ), required
to resolve the quadratic nonlinearity. When taking the inner product of this mode with
φq(ξ) using quadrature of order Q = 12 we are only able to exactly integrate the Lagrange
polynomial which passes through the quadrature zeros ξi as indicated by the filled points
in figure 1.9(b). Therefore, we are only integrating the Lagrange polynomial represented by
the dashed line in figure 1.9(b) and so the high frequency energy can be considered as being
aliased to this lower energy mode.

Finally, we note there are two equivalent approaches to eliminating this error:

1. Exactly integrate the inner product (φq, N) using a quadrature order consistent to the

order of the nonlinearity N . This is equivalent to setting (φq,
∑2P

p=P+1 N̂Lp)Q to zero
since Lp is orthogonal to φq ∈ PP when p > P .

2. Filter the exact Legendre expansion of the nonlinearity N so that all modes above P
are zero. This is equivalent to setting (φq,

∑2P
p=P+1 N̂pLp)Q to zero since by definition

the filter N̂p = 0 for p > P .

Although the two approaches have a similar computational cost, the second, sharp cuttoff,
filtering approach is attractive from an implementation point of view since it allows us to
maintain a quadrature order consistent with the treatment of a linear term.

1.4.2 Differentiation

Assuming a polynomial approximation of the form:

uδ(x) =
P∑

p=0

ûpφp(χ
−1) =

P∑

p=0

ûpφp(ξ),

where χ(ξ) is the mapping from the standard region ξ ∈ Ωs to the region containing x in
the interval [a, b], we can differentiate u(x) using the chain rule to obtain

duδ(ξ)

dx
=

duδ(ξ)

dξ

dξ

dx
=

P∑

p=0

ûp
dφp(ξ)

dξ

dξ

dx
.

=
P∑

p=0

u(ξp)hp(ξ)

Chain rule: 
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(a) (b)

Figure 1.10 (a) Linear interpolation, Iu(x), of the function u(x) in the region 0 ≤ x ≤ l using a
uniform mesh with Nel = 6 elemental domains. Each element is of size h = l/Nel. (b) The linear
interpolant is exact at the end-points of every element and so there is a point σe where the error
ε̄ = u − Iu is a maximum.

Noting that that l = h · Nel, there is a constant K such that

(||ε̄||E)2 ≤ lKC2h2.

Due to the minimal property of the finite element solution, the error in the finite element
approximation ε = u − uδ is bounded by ε̄ and so

||ε||E ≤ ||ε̄||E ≤ K1Ch,

where C depends on f and λ but is independent of h.

1.5.2 L2 Error of the p-Type Interpolation in a Single Element

Following Gottlieb & Orszag 38 we now consider the approximation to a function u(ξ) in
the interval −1 ≤ ξ ≤ 1 by an expansion of Legendre polynomials, Lp(ξ) of order P , that is

uδ(ξ) =
P∑

p=0

ûpLp(ξ).

Since the Legendre polynomials are orthogonal in this interval a Galerkin projection to
determine the expansion coefficients implies that

ûp =
(Lp(ξ), u(ξ))

(Lp(ξ), Lp(ξ))
= (Lp(ξ), u(ξ)) , (1.55)

where we have assumed that the Legendre modes are orthonormalised so that (Lp(ξ), Lp(ξ)) =
1. Assuming the function u(ξ) can be represented by an infinite expansion the L2 error be-
tween our finite expansion after P terms is

||ε||2 =




∫ 1

−1

∣∣∣∣∣
u(ξ) −

P∑

p=0

ûpLp(ξ)

∣∣∣∣∣

2

dξ




1/2

=




∫ 1

−1

∣∣∣∣∣

∞∑

p=0

ûpLp(ξ) −
P∑

p=0

ûpLp(ξ)

∣∣∣∣∣

2

dξ




1/2

=




∞∑

p=P+1

û2
p




1/2

(1.56)

-1 1

dξ

dx
=

h

2

duδ

dx
=

duδ

dξ

dξ

dx

Collocation
 property: 

u(ξ)du
dx =

∑P
p=0 u(xp)hp(ξ) ·

∑P
p=0

du
dξ (ξp)hp(ξ) !

∑P
p=0 u(ξp)du

dξ (xp)hp(ξ)
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where

u′
p =

P∑

q=0

uq
∂hq

∂ξ
(ξ)

∣∣∣∣
ξp

.

This is very significant when calculating non-linear terms such as the advection operator in
the Navier-Stokes equation. For example, to determine the value of the non-linear product

uδ(ξ)
∂uδ

∂ξ
(ξ)

at a point ξi we have:

uδ(ξi)
∂uδ

∂ξ
(ξi) =

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

uq
∂hq

∂ξ
(ξi)

)

=

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

u′
qhq(ξi)

)

.

Since hp(ξi) = δpi and hq(ξi) = δqi then

uδ(ξi)
∂uδ

∂ξ
(ξi) = uiu

′
i.

Finally, we can represent our nonlinear product in terms of an expansion of Lagrange poly-
nomials as

uδ(ξ)
∂uδ

∂ξ
(ξ) !

P∑

p=0

upu
′
php(ξ).

We note however that if uδ(ξ) is a polynomial of order P then the non-linear product

uδ(ξ)∂uδ

∂ξ (ξ) is a polynomial of order (2P − 1) and so it cannot be exactly represented by

the Lagrange polynomial expansion of order P . At the nodal points the coefficient upu′
p will

be identical to the value of uδ(ξp)∂uδ

∂ξ (ξp). Nevertheless, projecting the non-linear terms to
a lower polynomial order in this fashion can lead to aliasing errors as discussed in section
1.4.1.2.

Although this example is in one-dimension, the same properties apply in multiple di-
mensions provided the expansion can be represented by a tensor product of Lagrange poly-
nomials. Using the collapsed Cartesian coordinates systems described in section 2.2.1 it
is possible to represent any polynomial expansion as a tensor product of one-dimensional
Lagrange polynomials.

3.1.2.1 Two Dimensions Differentiation in the Standard Regions, Ωst

Implementation.
note: Numerical
differentiation in Ωst

Quadrilateral and
triangular regions.

Quadrilateral Region

To differentiate an expansion within the standard quadrilateral region Q2 of the form:

uδ(ξ1, ξ2) =
P1∑

p=0

P2∑

q=0

ûpqφpq(ξ1, ξ2),

we first represent the function in terms of Lagrange polynomials so

uδ(ξ1, ξ2) =
Q1−1∑

p=0

Q2−1∑

q=0

upq hp(ξ1)hq(ξ2),
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a lower polynomial order in this fashion can lead to aliasing errors as discussed in section
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Although this example is in one-dimension, the same properties apply in multiple di-
mensions provided the expansion can be represented by a tensor product of Lagrange poly-
nomials. Using the collapsed Cartesian coordinates systems described in section 2.2.1 it
is possible to represent any polynomial expansion as a tensor product of one-dimensional
Lagrange polynomials.

3.1.2.1 Two Dimensions Differentiation in the Standard Regions, Ωst

Implementation.
note: Numerical
differentiation in Ωst

Quadrilateral and
triangular regions.

Quadrilateral Region

To differentiate an expansion within the standard quadrilateral region Q2 of the form:

uδ(ξ1, ξ2) =
P1∑

p=0

P2∑

q=0

ûpqφpq(ξ1, ξ2),

we first represent the function in terms of Lagrange polynomials so

uδ(ξ1, ξ2) =
Q1−1∑

p=0

Q2−1∑

q=0

upq hp(ξ1)hq(ξ2),
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where
upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2

and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
evaluating upq from ûpq is a backwards transformation which we discuss further in section
3.1.5. The partial derivative with respect to ξ1 is therefore:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑

p=0

P2∑

q=0

upq
dhp(ξ1)

dξ1
hq(ξ2). (3.3)

A procedure for evaluating dhp(ξ)/dξ at the Gaussian quadrature points is illustrated in
section 1.4.2 and appendix C. From equation (3.3) we can see that to evaluate the partial
derivative at an arbitrary point in (ξ1, ξ2) we need to perform an O(P 2) summation over
p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
operation count is only O(P ) since hq(ξ2j) = δqj , that is,

∂uδ

∂ξ1
(ξ1i, ξ2j) =

P1∑

p=0

P2∑

q=0

{

upq
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

δqj

}

=
P1∑

p=0

upj
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑

q=0

uiq
dhq(ξ2)

dξ2

∣∣∣∣
ξ2j

.

Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)

(1 − η2)

∂

∂η1
+

∂

∂η2




. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by

Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D
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Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.
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where
upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2

and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
evaluating upq from ûpq is a backwards transformation which we discuss further in section
3.1.5. The partial derivative with respect to ξ1 is therefore:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑

p=0

P2∑

q=0

upq
dhp(ξ1)

dξ1
hq(ξ2). (3.3)

A procedure for evaluating dhp(ξ)/dξ at the Gaussian quadrature points is illustrated in
section 1.4.2 and appendix C. From equation (3.3) we can see that to evaluate the partial
derivative at an arbitrary point in (ξ1, ξ2) we need to perform an O(P 2) summation over
p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
operation count is only O(P ) since hq(ξ2j) = δqj , that is,

∂uδ

∂ξ1
(ξ1i, ξ2j) =

P1∑

p=0

P2∑

q=0

{

upq
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

δqj

}

=
P1∑

p=0

upj
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑

q=0

uiq
dhq(ξ2)

dξ2

∣∣∣∣
ξ2j

.

Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)

(1 − η2)

∂

∂η1
+

∂

∂η2




. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by
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where

u′
p =

P∑

q=0

uq
∂hq

∂ξ
(ξ)

∣∣∣∣
ξp

.

This is very significant when calculating non-linear terms such as the advection operator in
the Navier-Stokes equation. For example, to determine the value of the non-linear product

uδ(ξ)
∂uδ

∂ξ
(ξ)

at a point ξi we have:

uδ(ξi)
∂uδ

∂ξ
(ξi) =

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

uq
∂hq

∂ξ
(ξi)

)

=

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

u′
qhq(ξi)

)

.

Since hp(ξi) = δpi and hq(ξi) = δqi then

uδ(ξi)
∂uδ

∂ξ
(ξi) = uiu

′
i.

Finally, we can represent our nonlinear product in terms of an expansion of Lagrange poly-
nomials as
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the Lagrange polynomial expansion of order P . At the nodal points the coefficient upu′
p will

be identical to the value of uδ(ξp)∂uδ

∂ξ (ξp). Nevertheless, projecting the non-linear terms to
a lower polynomial order in this fashion can lead to aliasing errors as discussed in section
1.4.1.2.

Although this example is in one-dimension, the same properties apply in multiple di-
mensions provided the expansion can be represented by a tensor product of Lagrange poly-
nomials. Using the collapsed Cartesian coordinates systems described in section 2.2.1 it
is possible to represent any polynomial expansion as a tensor product of one-dimensional
Lagrange polynomials.

3.1.2.1 Two Dimensions Differentiation in the Standard Regions, Ωst

Implementation.
note: Numerical
differentiation in Ωst
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uδ(ξ)
∂uδ

∂ξ
(ξ)

at a point ξi we have:

uδ(ξi)
∂uδ

∂ξ
(ξi) =

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

uq
∂hq

∂ξ
(ξi)

)

=

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

u′
qhq(ξi)

)

.

Since hp(ξi) = δpi and hq(ξi) = δqi then

uδ(ξi)
∂uδ

∂ξ
(ξi) = uiu

′
i.

Finally, we can represent our nonlinear product in terms of an expansion of Lagrange poly-
nomials as

uδ(ξ)
∂uδ

∂ξ
(ξ) !

P∑

p=0

upu
′
php(ξ).

We note however that if uδ(ξ) is a polynomial of order P then the non-linear product

uδ(ξ)∂uδ

∂ξ (ξ) is a polynomial of order (2P − 1) and so it cannot be exactly represented by

the Lagrange polynomial expansion of order P . At the nodal points the coefficient upu′
p will

be identical to the value of uδ(ξp)∂uδ

∂ξ (ξp). Nevertheless, projecting the non-linear terms to
a lower polynomial order in this fashion can lead to aliasing errors as discussed in section
1.4.1.2.

Although this example is in one-dimension, the same properties apply in multiple di-
mensions provided the expansion can be represented by a tensor product of Lagrange poly-
nomials. Using the collapsed Cartesian coordinates systems described in section 2.2.1 it
is possible to represent any polynomial expansion as a tensor product of one-dimensional
Lagrange polynomials.

3.1.2.1 Two Dimensions Differentiation in the Standard Regions, Ωst

Implementation.
note: Numerical
differentiation in Ωst

Quadrilateral and
triangular regions.

Quadrilateral Region

To differentiate an expansion within the standard quadrilateral region Q2 of the form:

uδ(ξ1, ξ2) =
P1∑

p=0

P2∑

q=0

ûpqφpq(ξ1, ξ2),

we first represent the function in terms of Lagrange polynomials so

uδ(ξ1, ξ2) =
Q1−1∑

p=0

Q2−1∑

q=0

upq hp(ξ1)hq(ξ2),
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where
upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2

and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
evaluating upq from ûpq is a backwards transformation which we discuss further in section
3.1.5. The partial derivative with respect to ξ1 is therefore:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑

p=0

P2∑

q=0

upq
dhp(ξ1)

dξ1
hq(ξ2). (3.3)

A procedure for evaluating dhp(ξ)/dξ at the Gaussian quadrature points is illustrated in
section 1.4.2 and appendix C. From equation (3.3) we can see that to evaluate the partial
derivative at an arbitrary point in (ξ1, ξ2) we need to perform an O(P 2) summation over
p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
operation count is only O(P ) since hq(ξ2j) = δqj , that is,

∂uδ

∂ξ1
(ξ1i, ξ2j) =

P1∑

p=0

P2∑

q=0

{

upq
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

δqj

}

=
P1∑

p=0

upj
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑

q=0

uiq
dhq(ξ2)

dξ2

∣∣∣∣
ξ2j

.

Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)

(1 − η2)

∂

∂η1
+

∂

∂η2




. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by
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where
upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2

and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
evaluating upq from ûpq is a backwards transformation which we discuss further in section
3.1.5. The partial derivative with respect to ξ1 is therefore:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑

p=0

P2∑

q=0

upq
dhp(ξ1)

dξ1
hq(ξ2). (3.3)

A procedure for evaluating dhp(ξ)/dξ at the Gaussian quadrature points is illustrated in
section 1.4.2 and appendix C. From equation (3.3) we can see that to evaluate the partial
derivative at an arbitrary point in (ξ1, ξ2) we need to perform an O(P 2) summation over
p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
operation count is only O(P ) since hq(ξ2j) = δqj , that is,

∂uδ

∂ξ1
(ξ1i, ξ2j) =

P1∑

p=0

P2∑

q=0

{

upq
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

δqj

}

=
P1∑

p=0

upj
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑

q=0

uiq
dhq(ξ2)

dξ2

∣∣∣∣
ξ2j

.

Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)

(1 − η2)

∂

∂η1
+

∂

∂η2




. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by

106 Spectral/hp Element Methods for CFD Ch. 3

where
upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2

and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
evaluating upq from ûpq is a backwards transformation which we discuss further in section
3.1.5. The partial derivative with respect to ξ1 is therefore:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑

p=0

P2∑
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upq
dhp(ξ1)

dξ1
hq(ξ2). (3.3)

A procedure for evaluating dhp(ξ)/dξ at the Gaussian quadrature points is illustrated in
section 1.4.2 and appendix C. From equation (3.3) we can see that to evaluate the partial
derivative at an arbitrary point in (ξ1, ξ2) we need to perform an O(P 2) summation over
p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
operation count is only O(P ) since hq(ξ2j) = δqj , that is,
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upq
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∣∣∣∣
ξ1i

δqj

}

=
P1∑

p=0

upj
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑

q=0

uiq
dhq(ξ2)

dξ2
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ξ2j

.

Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)

(1 − η2)

∂

∂η1
+

∂

∂η2




. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by
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where
upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2

and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
evaluating upq from ûpq is a backwards transformation which we discuss further in section
3.1.5. The partial derivative with respect to ξ1 is therefore:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑

p=0

P2∑

q=0

upq
dhp(ξ1)

dξ1
hq(ξ2). (3.3)

A procedure for evaluating dhp(ξ)/dξ at the Gaussian quadrature points is illustrated in
section 1.4.2 and appendix C. From equation (3.3) we can see that to evaluate the partial
derivative at an arbitrary point in (ξ1, ξ2) we need to perform an O(P 2) summation over
p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
operation count is only O(P ) since hq(ξ2j) = δqj , that is,

∂uδ

∂ξ1
(ξ1i, ξ2j) =

P1∑

p=0

P2∑

q=0

{

upq
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

δqj

}

=
P1∑

p=0

upj
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑

q=0

uiq
dhq(ξ2)

dξ2

∣∣∣∣
ξ2j

.

Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)

(1 − η2)

∂

∂η1
+

∂

∂η2




. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by
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Figure 21: Construction of a fourth-order (P = 4) triangular expansion using the product
of two modified principal functions ψa

p(η1) and ψb
pq(η2). As compared with the

orthogonal expansion shown in figure 19, the modes are now decomposed into
interior and boundary contributions where the boundary modes have similar forms
along each edge.

not discuss non-tensorial expansions in this chapter, it is worth highlighting that the
electro-static nodal points by Hesthaven[38], the Fekete points of Taylor and Wingate
[39] and the geometric Gauss-Lobatto-Legendre points of Blyth and Pozrikidis [40] have
all been applied in spectral element methods and are designed to match the quadrilateral
nodal expansions.

4.2 Elemental operations and global assembly

To apply the two-dimensional expansions outlined in section 4.1 we need to be able to
integrate, differentiate and possibly assemble the expansion into a globally continuous
expansion. In the following sections we outline the key components of these operations
which relate to the isoparametric mapping of elements to a standard region, determining
the mapping metrics and global assembly of the expansion.

4.2.1 Isoparametric mapping

In sections 2.3.2 and 2.3.3 we saw how to integrate and differentiate in one-dimension and
the tensor product definition of the two-dimensional basis provides a natural extension to
determine the two-dimensional operations in the standard region Ωst (see [4] for further
details). However, in a practical implementation we need to perform these operations
in the elemental regions, Ωe, which may be of a generalised shape and orientation as
illustrated in Figure 22. To consider these cases we need to define a one-to-one mapping
between the Cartesian coordinates (x1, x2) and the local Cartesian coordinates (ξ1, ξ2)
which we denoted as

x1 = χe
1(ξ1, ξ2), x2 = χe

2(ξ1, ξ2).

For elemental shapes with straight sides a simple mapping may be constructed using
the linear vertex modes of a modified hierarchical/modal expansion. For example, to
map a triangular region [as in figure 22(a)] assuming that the global coordinates of the

4-7
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where
upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2

and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
evaluating upq from ûpq is a backwards transformation which we discuss further in section
3.1.5. The partial derivative with respect to ξ1 is therefore:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑

p=0

P2∑

q=0

upq
dhp(ξ1)

dξ1
hq(ξ2). (3.3)

A procedure for evaluating dhp(ξ)/dξ at the Gaussian quadrature points is illustrated in
section 1.4.2 and appendix C. From equation (3.3) we can see that to evaluate the partial
derivative at an arbitrary point in (ξ1, ξ2) we need to perform an O(P 2) summation over
p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
operation count is only O(P ) since hq(ξ2j) = δqj , that is,

∂uδ

∂ξ1
(ξ1i, ξ2j) =

P1∑

p=0

P2∑

q=0

{

upq
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

δqj

}

=
P1∑

p=0

upj
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑

q=0

uiq
dhq(ξ2)

dξ2

∣∣∣∣
ξ2j

.

Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)

(1 − η2)

∂

∂η1
+

∂

∂η2




. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by

Apply chain rule:
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and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
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p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
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.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:
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Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)
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∂

∂η1
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


. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by
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where
upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2

and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
evaluating upq from ûpq is a backwards transformation which we discuss further in section
3.1.5. The partial derivative with respect to ξ1 is therefore:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑

p=0

P2∑

q=0

upq
dhp(ξ1)

dξ1
hq(ξ2). (3.3)

A procedure for evaluating dhp(ξ)/dξ at the Gaussian quadrature points is illustrated in
section 1.4.2 and appendix C. From equation (3.3) we can see that to evaluate the partial
derivative at an arbitrary point in (ξ1, ξ2) we need to perform an O(P 2) summation over
p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
operation count is only O(P ) since hq(ξ2j) = δqj , that is,

∂uδ

∂ξ1
(ξ1i, ξ2j) =

P1∑

p=0

P2∑

q=0

{

upq
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

δqj

}

=
P1∑

p=0

upj
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑

q=0

uiq
dhq(ξ2)

dξ2

∣∣∣∣
ξ2j

.

Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)

(1 − η2)

∂

∂η1
+

∂

∂η2




. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by
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Figure 3.1 Quadrature points in the standard triangular T 2 and tetrahedral T 3 space with
Q1 = Q2 = Q3 = 7. In the “η1” direction a Gauss-Lobatto-Legendre distribution has been used
and in the “η2” and “η3” directions a Gauss-Radau-Jacobi distribution was used.

The Gauss-Jacobi rules are convenient in evaluating the integral (3.2) since we are able
to include the Jacobian term ∂(ξ1, ξ2)/∂(η1, η2) =

( 1−η2

2

)
directly in the quadrature weights

by setting α = 1, β = 0. Accordingly, the integration scheme over T 2 becomes:

∫ 1

−1

∫ 1

−1
u(η1, η2)

( 1−η2

2

)
dη1dη2 =

Q1−1∑

i=0

w0,0
i






Q2−1∑

j=0

ŵ1,0
j u(η1i, η2j)






where

ŵ1,0
j =

w1,0
j

2
.

The Gauss-Jacobi rule therefore uses fewer quadrature points than the standard Gauss-
Legendre quadrature rule to achieve an equivalent accuracy.

When choosing a distribution of points on which to integrate, the Lobatto-type quadra-
ture is preferred since it includes the end-points of the interval [−1, 1], which is helpful
when setting boundary conditions. However, when integrating over a triangular region we
note that the use of the Radau distribution in the η2 direction [which includes the point at
(η2 = −1)] is advantageous as it avoids the need for explicit calculation of any information at
the degenerate vertex (η1 = −1, η2 = 1). Although this vertex does not cause any problems
when integrating over T 2 it does present added complications when differentiating in T 2

(see section 3.1.2). The distribution of quadrature points in T 2 for Q1 = Q2 = 7 using a
Gauss-Lobatto-Legendre scheme in the η1 direction and a Gauss-Radau-Jacobi scheme in
the η2 direction is shown in figure 3.1.

Tetrahedral Region

To integrate over T 3 = {−1 ≤ ξ1, ξ2, ξ3; ξ1+ξ2+ξ3 ≤ −1} we use the collapsed Cartesian
coordinate system for the tetrahedron defined as

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
− 1, η2 =

2(1 + ξ2)

(1 − ξ3)
− 1, η3 = ξ3.

Using this system the integration becomes
∫

T 3

u(ξ1, ξ2, ξ3) dξ1dξ2dξ3 =

∫ 1

−1

∫ 1

−1

∫ 1

−1
u(η1, η2, η3)J dη1dη2dη3.
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where
upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2

and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
evaluating upq from ûpq is a backwards transformation which we discuss further in section
3.1.5. The partial derivative with respect to ξ1 is therefore:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑

p=0

P2∑

q=0

upq
dhp(ξ1)

dξ1
hq(ξ2). (3.3)

A procedure for evaluating dhp(ξ)/dξ at the Gaussian quadrature points is illustrated in
section 1.4.2 and appendix C. From equation (3.3) we can see that to evaluate the partial
derivative at an arbitrary point in (ξ1, ξ2) we need to perform an O(P 2) summation over
p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
operation count is only O(P ) since hq(ξ2j) = δqj , that is,

∂uδ

∂ξ1
(ξ1i, ξ2j) =

P1∑

p=0

P2∑

q=0

{

upq
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

δqj

}

=
P1∑

p=0

upj
dhp(ξ1)

dξ1

∣∣∣∣
ξ1i

.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑

q=0

uiq
dhq(ξ2)

dξ2

∣∣∣∣
ξ2j

.

Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)

(1 − η2)

∂

∂η1
+

∂

∂η2




. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by
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where
upq = uδ(ξ1p, ξ2q), Q1 > P1, Q2 > P2

and ξp, ξq are typically the zeros of an appropriate Gaussian quadrature. The operation of
evaluating upq from ûpq is a backwards transformation which we discuss further in section
3.1.5. The partial derivative with respect to ξ1 is therefore:

∂uδ

∂ξ1
(ξ1, ξ2) =

P1∑

p=0

P2∑

q=0

upq
dhp(ξ1)

dξ1
hq(ξ2). (3.3)

A procedure for evaluating dhp(ξ)/dξ at the Gaussian quadrature points is illustrated in
section 1.4.2 and appendix C. From equation (3.3) we can see that to evaluate the partial
derivative at an arbitrary point in (ξ1, ξ2) we need to perform an O(P 2) summation over
p, q. If we evaluate the derivative at a nodal point (ξ1i, ξ2j) of the Lagrange polynomial the
operation count is only O(P ) since hq(ξ2j) = δqj , that is,

∂uδ
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ξ1i
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}

=
P1∑

p=0

upj
dhp(ξ1)
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ξ1i

.

For a Galerkin formulation we normally only require the derivatives at the nodal points
of the Gaussian quadrature since we typically have to evaluate inner products of the form
(∇φ,∇φ). The total cost of evaluating the derivative at O(P 2) quadrature points will
therefore be O(P 3). The partial derivative with respect to ξ2 can be evaluated in a similar
fashion to arrive at:

∂uδ

∂ξ2
(ξ1i, ξ2j) =

P2∑

q=0

uiq
dhq(ξ2)

dξ2

∣∣∣∣
ξ2j

.

Triangular Region

For the triangular region, T 2, we can also represent any polynomial expansion in terms of
the Lagrange polynomial using the collapsed coordinates η1, η2:

uδ(ξ1, ξ2) =
P1,P2∑

p,q

ûpq φpq(η1, η2) =
P1∑

p=0

P2∑

q=0

upqhp(η1)hq(η2),

where

upq = uδ(η1p, η2q), η1 =
2(1 + ξ1)

(1 − ξ2)
− 1, η2 = ξ2,

and η1p, η2q refers to the nodal points of the Lagrange polynomial. The summation over
the indices p, q for the modified triangular expansion is dependent upon P1, P2 but does not
have a close packed form and so it cannot be summed consecutively. However, if Q1 > P1

and Q2 > P2 then the polynomial space of the basis φpq(η1, η2) is a subset of the space
spanned by the Lagrange polynomials hp(η1)hq(η2). The partial derivative with respect to
Cartesian system ξ1 and ξ2 may be determined by applying the chain rule:





∂

∂ξ1

∂

∂ξ2




=





2

(1 − η2)

∂

∂η1

2
(1 + η1)

(1 − η2)

∂

∂η1
+

∂

∂η2




. (3.4)

Similarly, to differentiate in the quadrilateral region, the value of the partial derivative with
respect to η1 and η2 at the nodal points is given by
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which can be inverted to obtain




dξ1

dξ2



 =
1

J






∂x2

∂ξ2
−

∂x1

∂ξ2

−
∂x2

∂ξ1

∂x1

∂ξ1









dx1

dx2



 , (51)

where J is the Jacobian defined by equation (48). However, as the mapping is assumed
to be one-to-one and have an inverse we assume that ξ1 = (χ1)−1(x1, x2) and ξ2 =
(χ2)−1(x1, x2) and so we can apply the chain rule directly to ξ1, ξ2 to obtain:




dξ1

dξ2



 =






∂ξ1

∂x1
−

∂ξ1

∂x2

−
∂ξ2

∂x1

∂ξ2

∂x2









dx1

dx2



 . (52)

Finally, equating (51) and (52) we see that:

∂ξ1

∂x1
=

1

J

∂x2

∂ξ2
,

∂ξ1

∂x2
= −

1

J

∂x1

∂ξ2
,

∂ξ2

∂x1
= −

1

J

∂x2

∂ξ1
,

∂ξ2

∂x2
=

1

J

∂x1

∂ξ1
.

We can now evaluate the two-dimensional gradient operator in equation (49) as all the
partial derivatives can be expressed in terms of differentials with respect to ξ1, ξ2 which
may be evaluated at the quadrature points using the Lagrange polynomial representation
explained in section 2.3.3.

4.2.3 Global Assembly

Modal Edge Connectivity
In figure 23 we see all the modes for an order P = 4 expansion in two quadrilateral
elements. Note that each mode is to be interpreted as spanning the entire element.
When considering an expansion with more than one edge mode we need to consider the
local orientation of the element. As shown in figure 23, depending on the orientations
of the local coordinate systems within the element the sign of odd-ordered modes may
need to be reversed. The reason for the sign negation is that the elemental modal shapes
are defined with respect to the local coordinate system (ξ1, ξ2). If the local systems are
orientated so that the two neighbouring coordinates are in opposite directions then the
sign of one odd-shaped mode will need to be reversed.

It also appears from figure 23 that the order of the edge modes needs to be reversed.
This is, however, not the case. The hierarchical boundary modes only have a physical
interpretation insofar as they are associated with a physical vertex or edge within the
region. Therefore, we number the edge modes according to their polynomial order (that
is, lowest polynomial order mode has the lowest edge number). For the example shown
in figure 23, the numbering of the local modes is shown in figure 24 where we have placed
all numbering for a given edge at the centre point of the edge. If we follow a similar
convention when numbering the global modes, as shown in the right-hand side of figure
24, the modes of similar polynomial order (which we need to match) will have the same
global number and so we are just left with the issue of sign reversal. In this example, the
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dξ1(x1, x2) =
∂ξ1

∂x1
dx1 +

∂ξ1

∂x2
dx2
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which can be inverted to obtain


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

 =
1

J






∂x2
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−

∂x1
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∂x2

∂ξ1
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


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

 , (51)

where J is the Jacobian defined by equation (48). However, as the mapping is assumed
to be one-to-one and have an inverse we assume that ξ1 = (χ1)−1(x1, x2) and ξ2 =
(χ2)−1(x1, x2) and so we can apply the chain rule directly to ξ1, ξ2 to obtain:




dξ1

dξ2


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




∂ξ1
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∂ξ1
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−
∂ξ2

∂x1

∂ξ2

∂x2


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




dx1

dx2



 . (52)

Finally, equating (51) and (52) we see that:

∂ξ1
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1

J

∂x2

∂ξ2
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∂ξ1

∂x2
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1

J

∂x1

∂ξ2
,

∂ξ2

∂x1
= −

1

J

∂x2

∂ξ1
,

∂ξ2

∂x2
=

1

J

∂x1

∂ξ1
.

We can now evaluate the two-dimensional gradient operator in equation (49) as all the
partial derivatives can be expressed in terms of differentials with respect to ξ1, ξ2 which
may be evaluated at the quadrature points using the Lagrange polynomial representation
explained in section 2.3.3.

4.2.3 Global Assembly

Modal Edge Connectivity
In figure 23 we see all the modes for an order P = 4 expansion in two quadrilateral
elements. Note that each mode is to be interpreted as spanning the entire element.
When considering an expansion with more than one edge mode we need to consider the
local orientation of the element. As shown in figure 23, depending on the orientations
of the local coordinate systems within the element the sign of odd-ordered modes may
need to be reversed. The reason for the sign negation is that the elemental modal shapes
are defined with respect to the local coordinate system (ξ1, ξ2). If the local systems are
orientated so that the two neighbouring coordinates are in opposite directions then the
sign of one odd-shaped mode will need to be reversed.

It also appears from figure 23 that the order of the edge modes needs to be reversed.
This is, however, not the case. The hierarchical boundary modes only have a physical
interpretation insofar as they are associated with a physical vertex or edge within the
region. Therefore, we number the edge modes according to their polynomial order (that
is, lowest polynomial order mode has the lowest edge number). For the example shown
in figure 23, the numbering of the local modes is shown in figure 24 where we have placed
all numbering for a given edge at the centre point of the edge. If we follow a similar
convention when numbering the global modes, as shown in the right-hand side of figure
24, the modes of similar polynomial order (which we need to match) will have the same
global number and so we are just left with the issue of sign reversal. In this example, the
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Figure 22: To construct a C0 expansion from multiple elements of specified shapes (for ex-
ample, triangles or rectangles), each elemental region Ωe is mapped to a standard
region Ωst in which all local operations are evaluated.

triangle {(xA
1 , xA

2 ), (xB
1 , xB

2 ), (xC
1 , xC

2 )} are known (with C the collapsed vertex), we can
use

xi = χe
1(η1, η2) = xA

i

(1 − η1)

2

(1 − η2)

2

+xB
i

(1 + η1)

2

(1 − η2)

2
+ xC

i

(1 + η2)

2
, i = 1, 2. (45)

Equation (45) is expressed in terms of collapsed Cartesian coordinates but can easily be
expressed in terms of the Cartesian coordinates by recalling that (η1 = 2 (1+ξ1)

(1−ξ2) − 1, η2 =

ξ2), which on substitution into (45) gives:

xi = χ(ξ1, ξ2) = xA
i

(−ξ2 − ξ1)

2
+ xB

i

(1 + ξ1)

2
+ xC

i

(1 + ξ2)

2
. i = 1, 2 (46)

A similar approach leads to the bilinear mapping for an arbitrary shaped straight-
sided quadrilateral where only the vertices need to be prescribed. For the straight-sided
quadrilateral with vertices labelled as shown in figure 22(b) the mapping is:

xi = χ1(ξ1, ξ2) = xA
i

(1 − ξ1)

2

(1 − ξ2)

2
+ xB

i

(1 + ξ1)

2

(1 − ξ2)

2

+xD
i

(1 − ξ1)

2

(1 + ξ2)

2
+ xC

i

(1 + ξ1)

2

(1 + ξ2)

2
. i = 1, 2 (47)

Elements can also be curvilinear, although in this case some information about how
the edges are curved is also required. When this is known, we can define a more complex
elemental mapping, see [4] for further details.

4.2.2 Metric of the mapping

To perform integration and differentiation of a general element using the mapping to the
standard region we need to define appropriate metrics of the elemental mapping. We
start by denoting an arbitrary triangular or quadrilateral region by Ωe which is a function
of the global Cartesian coordinate system (x1, x2) in two-dimensions. To integrate over
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Ωe, we transform this region into the standard region Ωst, defined in terms of (ξ1, ξ2),
and we have ∫

Ωe

u(x1, x2) dx1 dx2 =

∫

Ωst

u(ξ1, ξ2)|J2D| dξ1 dξ2,

where J2D is the two-dimensional Jacobian due to the transformation, defined as:

J2D =

∣∣∣∣∣∣∣

∂x1

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ1

∂x2

∂ξ2

∣∣∣∣∣∣∣
=

∂x1

∂ξ1

∂x2

∂ξ2
−

∂x1

∂ξ2

∂x2

∂ξ1
. (48)

As we have assumed that we know the form of the mapping [i.e. x1 = χ1 (ξ1, ξ2),
x2 = χ2(ξ1, ξ2)], we can evaluate all the partial derivatives required to determine the
Jacobian using an analogous technique to that described in 2.3.3. If the elemental region
is straight-sided, then we have seen that a mapping from (x1, x2) → (ξ1, ξ2) is given
by equations (46) and (47). The simple form of these mappings means that the partial
derivatives, and therefore the Jacobian, are constant for quadrilateral regions with similar
shape and orientation to the standard region, as well as for all triangular regions. For
deformed regions the Jacobian may be evaluated and stored at the quadrature points.
This essentially represents the Jacobian as a polynomial function and can therefore
increase the polynomial order of the integrand.

To differentiate a function within the arbitrary region Ωe as illustrated in figure 22,
we again apply the chain rule which, for the 2D case, gives:

∇ =





∂

∂x1

∂

∂x2




=





∂ξ1

∂x1

∂

∂ξ1
+

∂ξ2

∂x1

∂

∂ξ2

∂ξ1

∂x2

∂

∂ξ1
+

∂ξ2

∂x2

∂

∂ξ2




. (49)

In section 2.3.3 we illustrated differentiation with respect to ξ1 and a similar approach can
be applied to the ξ2 direction. However we now also need to evaluate partial derivatives
of the form ∂ξ1/∂x1. For the linear mapping case given by equations (46) and (47) it
is possible to obtain an analytic formula, but in general we need a technique to handle
a curvilinear elemental region. To do this, we express the partial derivatives such as
∂ξ1/∂x1 in terms of partial derivatives with respect to ξ1, ξ2, which we already know how
to evaluate. For a general function dependent on two variables, u(ξ1, ξ2), we know from
the chain rule that the total change in u(ξ1, ξ2) is

du(ξ1, ξ2) =
∂u

∂ξ1
dξ1 +

∂u

∂ξ2
dξ2. (50)

If we replace u(ξ1, ξ2) by x1 = χ1(ξ1, ξ2) and x2 = χ2(ξ1, ξ2) we obtain the matrix
system




dx1

dx2



 =






∂x1

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ1

∂x2

∂ξ2









dξ1

dξ2



 ,
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which can be inverted to obtain




dξ1

dξ2



 =
1

J






∂x2

∂ξ2
−

∂x1

∂ξ2

−
∂x2

∂ξ1

∂x1

∂ξ1









dx1

dx2



 , (51)

where J is the Jacobian defined by equation (48). However, as the mapping is assumed
to be one-to-one and have an inverse we assume that ξ1 = (χ1)−1(x1, x2) and ξ2 =
(χ2)−1(x1, x2) and so we can apply the chain rule directly to ξ1, ξ2 to obtain:




dξ1

dξ2



 =






∂ξ1

∂x1
−

∂ξ1

∂x2

−
∂ξ2

∂x1

∂ξ2

∂x2









dx1

dx2



 . (52)

Finally, equating (51) and (52) we see that:

∂ξ1

∂x1
=

1

J

∂x2

∂ξ2
,

∂ξ1

∂x2
= −

1

J

∂x1

∂ξ2
,

∂ξ2

∂x1
= −

1

J

∂x2

∂ξ1
,

∂ξ2

∂x2
=

1

J

∂x1

∂ξ1
.

We can now evaluate the two-dimensional gradient operator in equation (49) as all the
partial derivatives can be expressed in terms of differentials with respect to ξ1, ξ2 which
may be evaluated at the quadrature points using the Lagrange polynomial representation
explained in section 2.3.3.

4.2.3 Global Assembly

Modal Edge Connectivity
In figure 23 we see all the modes for an order P = 4 expansion in two quadrilateral
elements. Note that each mode is to be interpreted as spanning the entire element.
When considering an expansion with more than one edge mode we need to consider the
local orientation of the element. As shown in figure 23, depending on the orientations
of the local coordinate systems within the element the sign of odd-ordered modes may
need to be reversed. The reason for the sign negation is that the elemental modal shapes
are defined with respect to the local coordinate system (ξ1, ξ2). If the local systems are
orientated so that the two neighbouring coordinates are in opposite directions then the
sign of one odd-shaped mode will need to be reversed.

It also appears from figure 23 that the order of the edge modes needs to be reversed.
This is, however, not the case. The hierarchical boundary modes only have a physical
interpretation insofar as they are associated with a physical vertex or edge within the
region. Therefore, we number the edge modes according to their polynomial order (that
is, lowest polynomial order mode has the lowest edge number). For the example shown
in figure 23, the numbering of the local modes is shown in figure 24 where we have placed
all numbering for a given edge at the centre point of the edge. If we follow a similar
convention when numbering the global modes, as shown in the right-hand side of figure
24, the modes of similar polynomial order (which we need to match) will have the same
global number and so we are just left with the issue of sign reversal. In this example, the
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Ωe, we transform this region into the standard region Ωst, defined in terms of (ξ1, ξ2),
and we have ∫

Ωe

u(x1, x2) dx1 dx2 =

∫

Ωst

u(ξ1, ξ2)|J2D| dξ1 dξ2,

where J2D is the two-dimensional Jacobian due to the transformation, defined as:

J2D =

∣∣∣∣∣∣∣

∂x1

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ1

∂x2

∂ξ2

∣∣∣∣∣∣∣
=

∂x1

∂ξ1

∂x2

∂ξ2
−

∂x1

∂ξ2

∂x2

∂ξ1
. (48)

As we have assumed that we know the form of the mapping [i.e. x1 = χ1 (ξ1, ξ2),
x2 = χ2(ξ1, ξ2)], we can evaluate all the partial derivatives required to determine the
Jacobian using an analogous technique to that described in 2.3.3. If the elemental region
is straight-sided, then we have seen that a mapping from (x1, x2) → (ξ1, ξ2) is given
by equations (46) and (47). The simple form of these mappings means that the partial
derivatives, and therefore the Jacobian, are constant for quadrilateral regions with similar
shape and orientation to the standard region, as well as for all triangular regions. For
deformed regions the Jacobian may be evaluated and stored at the quadrature points.
This essentially represents the Jacobian as a polynomial function and can therefore
increase the polynomial order of the integrand.

To differentiate a function within the arbitrary region Ωe as illustrated in figure 22,
we again apply the chain rule which, for the 2D case, gives:

∇ =





∂

∂x1

∂

∂x2




=





∂ξ1

∂x1

∂

∂ξ1
+

∂ξ2

∂x1

∂

∂ξ2

∂ξ1

∂x2

∂

∂ξ1
+

∂ξ2

∂x2

∂

∂ξ2




. (49)

In section 2.3.3 we illustrated differentiation with respect to ξ1 and a similar approach can
be applied to the ξ2 direction. However we now also need to evaluate partial derivatives
of the form ∂ξ1/∂x1. For the linear mapping case given by equations (46) and (47) it
is possible to obtain an analytic formula, but in general we need a technique to handle
a curvilinear elemental region. To do this, we express the partial derivatives such as
∂ξ1/∂x1 in terms of partial derivatives with respect to ξ1, ξ2, which we already know how
to evaluate. For a general function dependent on two variables, u(ξ1, ξ2), we know from
the chain rule that the total change in u(ξ1, ξ2) is

du(ξ1, ξ2) =
∂u
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dξ1 +

∂u
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dξ2. (50)

If we replace u(ξ1, ξ2) by x1 = χ1(ξ1, ξ2) and x2 = χ2(ξ1, ξ2) we obtain the matrix
system




dx1

dx2



 =






∂x1

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ1

∂x2

∂ξ2









dξ1

dξ2



 ,

4-9

dx1(ξ1, ξ2) =
∂x1

∂ξ1
dξ1 +

∂x1

∂ξ2
dξ2



Nektar++

Elemental forward transform
LocalRegions::QuadExp/TriExp::FwdTrans()

124 Spectral/hp Element Methods for CFD Ch. 3

(ξ1, ξ2, ξ3) we note that this is equivalent to evaluating the functions at the global coordi-
nates (x1, x2, x3) under the mapping xi = χe

i (ξ1, ξ2, ξ3). In general, the discrete backward
transformation may be evaluated at any set of discrete points depending on the definition
of the matrix B. For example, a more evenly distributed set of points may be required
graphically to display the solution. For most computational needs however we will normally
evaluate the basis at the quadrature points.

Nodal Expansions

We note that when using a nodal expansions basis there are special cases of the backward
transform matrix where the matrix becomes the identity matrix. If the matrix B is generated
using a Lagrange polynomial through a set of nodal points and the basis is evaluated at the
same nodal points then B = I. This arises when using either the non-tensorial simplex
basis or the quadrilateral and hexahedral nodal expansions. When B = I we observe that

u = Bû = Iû = û.

As discussed previously, this demonstrates that, for the classical spectral element method
and Lagrange expansion in simplexes, the expansion coefficients are simply the values of
the solution at the nodal points. We note, however, that when the basis is evaluated at
points other than the nodal points the matrix B is full. Such a situation would arise even
in the tensorial quadrilateral/hexahedral nodal basis if the quadrature order is not exactly
equivalent to the polynomial order plus one (i.e., Q = P + 1).

3.1.5.3 Elemental Forward Transformation

In this section we discuss the formulation, using the previously introduced matrix and vec-
tor notation, of the forward transformation. The action of the forward transformation is
that given either a continuous, u(ξ), or discrete uδ(ξ) function we determine the expansion
coefficients û. There are two commonly applied approaches using either a collocation or
Galerkin projection both of which can be formulated from the method of weighted residual
statement which we will first review. A similar construction was outlined in one-dimension
in section 1.3.2.1.

If we consider a two-dimensional function u(ξ1, ξ2) which does not lie within the polyno-
mial space of the expansion basis there will be an approximation error between our approx-
imation uδ =

∑
p,q ûpqφpq and the function u(ξ) which we denote by R(u), that is,

uδ(ξ1, ξ2) − u(ξ1, ξ2) = R(u) (3.57)

or equivalently (
∑

pq

ûpqφpq(ξ1, ξ2)

)

− u(ξ1, ξ2) = R(u).

Following the method of weighted residuals, we represent the inner product of both sides of
this equation by a presently undefined function v(ξ1, ξ2)

(v,
∑

p,q

ûpqφpq) − (v, u) = (v, R(u)),

and set the right-hand-side term to zero, (v, R(u)) = 0, to obtain

(v,
∑

p,q

ûpqφpq) = (v, u). (3.58)

The choice of v(ξ) will define the type of projection this is illustrated in the next two
sections for the case of a collocation and Galerkin projection.
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p,q ûpqφpq and the function u(ξ) which we denote by R(u), that is,

uδ(ξ1, ξ2) − u(ξ1, ξ2) = R(u) (3.57)

or equivalently (
∑

pq
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ûpqφpq) − (v, u) = (v, R(u)),

and set the right-hand-side term to zero, (v, R(u)) = 0, to obtain

(v,
∑

p,q
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The choice of v(ξ) will define the type of projection this is illustrated in the next two
sections for the case of a collocation and Galerkin projection.
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If a mapping for χe(ξ) other than the one given in (1.31) has been used then the inverse
mapping will not necessarily be analytic. This situation can arise in multiple dimensions
where elements may be curved.

1.3.1.3 Parametric Mapping

The transformation χe(ξ) given in equation (1.31) maps the local coordinate ξ to the global
coordinate x (x ∈ Ωe) and can be interpreted as expanding the global coordinate, x, in
terms of a linear finite element expansion. It, therefore, could have been written as

x = χe(ξ) = φ0(ξ) xe−1 + φ1(ξ) xe, ξ ∈ Ωst.

This technique of expressing the global coordinate, x, in terms of the local expansion function
is known as a parametric mapping. Typically, we refer to the mapping as being iso-parametric
if we use the same order expansion to map the coordinates as we use to represent the
dependent variables. If we use a higher or lower order mapping for the coordinates as
compared to the dependent variable the mapping is referred to as super- or sub-parametric,
respectively. As we shall see in section 3.1.3.2, parametric mappings provide a convenient
way to express curved domains.

We note that the mapping in equation (1.31) is linear and therefore so is its inverse.
This means that the local expansion mode φp(χ−1

e (x)) is a polynomial in x as well as is ξ
and therefore under the mapping (1.31) the global expansion modes are also polynomials
in x. However, when a higher order polynomial mapping is used, as is necessary for curved
elements, the global expansion may not remain a polynomial in x although, by definition, it
is always a polynomial in ξ.

1.3.1.4 Global Assembly/Direct Stiffness Summation

To relate the concepts of local and global expansion bases we need to introduce the concept Implementation.
note: Global
Assembly: Assembling
global bases and
operations from local
bases and operators.

of global assembly or direct stiffness summation as it is sometimes known. In this section we
shall describe the process for a one-dimensional linear basis but the same idea can be used
in higher order expansions and multiple dimensions. Let us recall that the finite element
approximation uδ in terms of the global modes is written as

uδ(x) =

Ndof−1∑

i=0

ûiΦi(x).

We have seen in section 1.3.1.2 that the global modes Φi(x) can be expressed in terms of
the local expansion modes φp(ξ) and therefore we can express uδ in terms of φp(ξ) as

uδ(x) =

Ndof−1∑

i=0

ûiΦi(x) =
Nel∑

e=1

P∑

p=0

ûe
pφ

e
p(ξ),

where in this case P is the polynomial order of the expansion and φe
p(ξ) = φp([χe]−1(x))

(the superscript denotes the element in which the function is non-zero). As there are more
of the local expansion coefficients, ûe

p, than global expansion coefficients, ûi, some further
conditions are required to relate the local and global definitions of the solution uδ(x).

For the linear finite element example shown in figure 1.3 where P = 1 and Nel = 3 the
constraint is that the global modes are continuous everywhere, which implies

û1
1 = û2

0

û2
1 = û3

0. (1.32)
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Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.
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Figure 21: Construction of a fourth-order (P = 4) triangular expansion using the product
of two modified principal functions ψa

p(η1) and ψb
pq(η2). As compared with the

orthogonal expansion shown in figure 19, the modes are now decomposed into
interior and boundary contributions where the boundary modes have similar forms
along each edge.

not discuss non-tensorial expansions in this chapter, it is worth highlighting that the
electro-static nodal points by Hesthaven[38], the Fekete points of Taylor and Wingate
[39] and the geometric Gauss-Lobatto-Legendre points of Blyth and Pozrikidis [40] have
all been applied in spectral element methods and are designed to match the quadrilateral
nodal expansions.

4.2 Elemental operations and global assembly

To apply the two-dimensional expansions outlined in section 4.1 we need to be able to
integrate, differentiate and possibly assemble the expansion into a globally continuous
expansion. In the following sections we outline the key components of these operations
which relate to the isoparametric mapping of elements to a standard region, determining
the mapping metrics and global assembly of the expansion.

4.2.1 Isoparametric mapping

In sections 2.3.2 and 2.3.3 we saw how to integrate and differentiate in one-dimension and
the tensor product definition of the two-dimensional basis provides a natural extension to
determine the two-dimensional operations in the standard region Ωst (see [4] for further
details). However, in a practical implementation we need to perform these operations
in the elemental regions, Ωe, which may be of a generalised shape and orientation as
illustrated in Figure 22. To consider these cases we need to define a one-to-one mapping
between the Cartesian coordinates (x1, x2) and the local Cartesian coordinates (ξ1, ξ2)
which we denoted as

x1 = χe
1(ξ1, ξ2), x2 = χe

2(ξ1, ξ2).

For elemental shapes with straight sides a simple mapping may be constructed using
the linear vertex modes of a modified hierarchical/modal expansion. For example, to
map a triangular region [as in figure 22(a)] assuming that the global coordinates of the
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3.1.5.3 Elemental Forward Transformation

In this section we discuss the formulation, using the previously introduced matrix and vec-
tor notation, of the forward transformation. The action of the forward transformation is
that given either a continuous, u(ξ), or discrete uδ(ξ) function we determine the expansion
coefficients û. There are two commonly applied approaches using either a collocation or
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statement which we will first review. A similar construction was outlined in one-dimension
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If we consider a two-dimensional function u(ξ1, ξ2) which does not lie within the polyno-
mial space of the expansion basis there will be an approximation error between our approx-
imation uδ =

∑
p,q ûpqφpq and the function u(ξ) which we denote by R(u), that is,

uδ(ξ1, ξ2) − u(ξ1, ξ2) = R(u) (3.57)

or equivalently (
∑

pq

ûpqφpq(ξ1, ξ2)

)

− u(ξ1, ξ2) = R(u).

Following the method of weighted residuals, we represent the inner product of both sides of
this equation by a presently undefined function v(ξ1, ξ2)

(v,
∑

p,q

ûpqφpq) − (v, u) = (v, R(u)),

and set the right-hand-side term to zero, (v, R(u)) = 0, to obtain

(v,
∑

p,q

ûpqφpq) = (v, u). (3.58)

The choice of v(ξ) will define the type of projection this is illustrated in the next two
sections for the case of a collocation and Galerkin projection.

Method of weighted 
residual:

(a, b) =
∫

Ωe

ab dx
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(ξ1, ξ2, ξ3) we note that this is equivalent to evaluating the functions at the global coordi-
nates (x1, x2, x3) under the mapping xi = χe

i (ξ1, ξ2, ξ3). In general, the discrete backward
transformation may be evaluated at any set of discrete points depending on the definition
of the matrix B. For example, a more evenly distributed set of points may be required
graphically to display the solution. For most computational needs however we will normally
evaluate the basis at the quadrature points.

Nodal Expansions

We note that when using a nodal expansions basis there are special cases of the backward
transform matrix where the matrix becomes the identity matrix. If the matrix B is generated
using a Lagrange polynomial through a set of nodal points and the basis is evaluated at the
same nodal points then B = I. This arises when using either the non-tensorial simplex
basis or the quadrilateral and hexahedral nodal expansions. When B = I we observe that

u = Bû = Iû = û.

As discussed previously, this demonstrates that, for the classical spectral element method
and Lagrange expansion in simplexes, the expansion coefficients are simply the values of
the solution at the nodal points. We note, however, that when the basis is evaluated at
points other than the nodal points the matrix B is full. Such a situation would arise even
in the tensorial quadrilateral/hexahedral nodal basis if the quadrature order is not exactly
equivalent to the polynomial order plus one (i.e., Q = P + 1).

3.1.5.3 Elemental Forward Transformation

In this section we discuss the formulation, using the previously introduced matrix and vec-
tor notation, of the forward transformation. The action of the forward transformation is
that given either a continuous, u(ξ), or discrete uδ(ξ) function we determine the expansion
coefficients û. There are two commonly applied approaches using either a collocation or
Galerkin projection both of which can be formulated from the method of weighted residual
statement which we will first review. A similar construction was outlined in one-dimension
in section 1.3.2.1.

If we consider a two-dimensional function u(ξ1, ξ2) which does not lie within the polyno-
mial space of the expansion basis there will be an approximation error between our approx-
imation uδ =

∑
p,q ûpqφpq and the function u(ξ) which we denote by R(u), that is,

uδ(ξ1, ξ2) − u(ξ1, ξ2) = R(u) (3.57)

or equivalently (
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)
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Following the method of weighted residuals, we represent the inner product of both sides of
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and set the right-hand-side term to zero, (v, R(u)) = 0, to obtain
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ûpqφpq) = (v, u). (3.58)

The choice of v(ξ) will define the type of projection this is illustrated in the next two
sections for the case of a collocation and Galerkin projection.
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The choice of v(ξ) will define the type of projection this is illustrated in the next two
sections for the case of a collocation and Galerkin projection.
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Collocation Projection - Interpolation

We note that the matrix B introduced in the previous section is directly analogous to the
generalised Vandemonde matrix V introduced in section 2.3.2. In particular, if we consider
the case where the set of distinct points ξi is of the same dimension as the expansion basis
then the matrix B is identical to our previous definition of V in section 2.3.2. In this case
B is square and invertible and the inversion of this matrix is equivalent to a collocation
projection. To see how this fits into the statement of the method of weighted residuals we
write our approximation as

uδ(ξ) =
Nm−1∑

n=1

ûnφn(ξ),

then the methods of weighted residual equation (3.58) implies that

∫

Ω
vmuδ(ξ) dξ =

∫

Ω
vm

Nm−1∑

n=1

ûnφn(ξ) dξ m = 0, . . . , Nm − 1. (3.59)

In the collocation method we set vm = δ(ξm) where δ(ξm) is the Dirac delta function at the
Nm discrete nodal points ξm and implies that R(u(ξm)) = 0. The action of the Dirac delta
functions on the integrals means that equation (3.59) can be evaluated as

uδ(ξm) =
Nm−1∑

n=1

ûnφn(ξm) n = 0, . . . , Nm − 1

which can be written in matrix form to obtain

u = BN û or û = B−1
N u (3.60)

where BN [m][n] = φn(ξm).
In general, the above formulation can be applied to any function u(ξ) not just the

approximation uδ(ξ) and thus we can use it as a technique to interpolate a function within
the region ξ ∈ Ωst.

Discrete Galerkin Projection

The discrete forward transform which determines the modal coefficients ûpq from a pre-
scribed function u(ξ) evaluated at a set of nodal or quadrature points, can be expressed in
terms of the matrix formulation previously introduced as

û =
(
BT WB

)−1
BT Wu, (3.61)

where we note that the inverted matrix BWB is symmetric in contrast to the collocation
matrix BN . We refer to this as a discrete forward transform since if u(ξ) is not a polyno-
mial function of similar space as the projecting polynomial then a collocation projection is
being performed when evaluating the function at the quadrature points to obtain u. We
note, however, that the collocation projection may be onto a richer polynomial space than
the Galerkin projection and so the error associated with the Galerkin projection typically
dominates.

In the Galerkin projection we choose the weight function in the method of weighted resid-
uals (3.58) to be the same as the expansion basis so that v(ξ1, ξ2) = φrs(ξ1, ξ2). Equation
(3.58) can therefore be written as

(φrs,
∑

p,q

ûpqφpq) = (φrs, u).

Galerkin weight: 

M[i][j] =
∫

Ωe

φi(r,s)(x1, x2)φj(p,q)(x1, x2)dx1dx2 û[i] = ûi(p,q)

f [i] =
∫

Ωe

φi(p,q)u(x1, x2)dx1dx2

û = M−1f

Elemental forward transform
LocalRegions::QuadExp/TriExp::FwdTrans()
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ûnφn(ξ) dξ m = 0, . . . , Nm − 1. (3.59)

In the collocation method we set vm = δ(ξm) where δ(ξm) is the Dirac delta function at the
Nm discrete nodal points ξm and implies that R(u(ξm)) = 0. The action of the Dirac delta
functions on the integrals means that equation (3.59) can be evaluated as

uδ(ξm) =
Nm−1∑

n=1
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mial function of similar space as the projecting polynomial then a collocation projection is
being performed when evaluating the function at the quadrature points to obtain u. We
note, however, that the collocation projection may be onto a richer polynomial space than
the Galerkin projection and so the error associated with the Galerkin projection typically
dominates.

In the Galerkin projection we choose the weight function in the method of weighted resid-
uals (3.58) to be the same as the expansion basis so that v(ξ1, ξ2) = φrs(ξ1, ξ2). Equation
(3.58) can therefore be written as

(φrs,
∑

p,q

ûpqφpq) = (φrs, u).
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Noting that the coefficients ûpq are independent of ξ1, ξ2 we can rewrite this equation as
∑

p,q

(φrs, φpq)ûpq = (φrs, u), (3.62)

which is a scalar equation. If we test this equation versus all Nm modes φrs we then have
Nm scalar equations to solve for the Nm unknowns degrees of freedom ûpq.

Equation (3.62) is the functional representation of a linear system which can be solved to
determine ûpq where the term (φrs, φpq) represents the components of the two-dimensional
elemental mass matrix M , which has a rank equal to Nm. An identical procedure to the
one outlined above using φpqr would have led to the three-dimensional system.

Although equation (3.62) represents the forward transformation it is not immediately
clear how to construct the matrix system. First, we need to make an approximation to
represent the inner product discretely by using Gaussian quadrature. The integral in the
inner product on the left-hand-side may be evaluated exactly using Gaussian quadrature
providing that a sufficient number of quadrature points are used. The right-hand-side inner
product in equation (3.62) involves the arbitrary function u(ξ1, ξ2, ξ3) which may not be a
polynomial. Nevertheless, providing the function u is sufficiently smooth the error in evalu-
ating the integral will be consistent with the approximation error. Similarly, by evaluating
the continuous function at the collocation points we are performing a collocation projection
onto the quadrature points. The discrete form of equation (3.62) can be written

∑

pq

(φrs, φpq)δ ûpq = (φrs, u)δ, ∀r, s. (3.63)

This equation represents a system of Nm scalar equations for every φrs.
We can now illustrate the use of the matrix and vector notation by initially considering

the inner product of a function v(x1, x2, x3) with a function u(x1, x2, x3) and is defined as

(v, u)δ =

∫
v(ξ1, ξ2, ξ3)u(ξ1, ξ2, ξ3)|J | dξ1 dξ2 dξ3.

Representing the integral using Gaussian quadrature we have a discrete approximation such
that

(v, u)δ =
Q1−1∑

i=0

Q2−1∑

j=0

Q3−1∑

k=0

wiwjwk v(ξ1i, ξ2j , ξ3k) u(ξ1i, ξ2j , ξ3k) |Jijk |, (3.64)

where
(v, u) = (v, u)δ + ε

and ε is the error due to the numerical integration or collocation projection, as defined in
appendix B. If the functions u and v are sufficiently smooth in the sense that the first Q
derivatives are bounded, then ε will be of the same order as the approximation error, which
is important if this error is not to dominate 17.

The operation in equation (3.64) can be evaluated using the vectors v and u and the
matrix W as

(v, u)δ = vT Wu. (3.65)

Now to assemble equation (3.63) into a matrix system we note that when v(ξ) = φrs(ξ)
in equation (3.65) we have the right-hand-side of equation (3.63) for a single expansion
mode. To evaluate the complete right-hand-side of the matrix system we need to evaluate
this inner product over all Nm expansion modes to produce a vector of length Nm. The
columns of the matrix B represent the expansion modes φrs at the quadrature points and
so to evaluate the inner product with respect to all modes we replace v in equation (3.65)
with B, that is,

BT Wu[m(rs)] = (φrs, u)δ,
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The shape of interior modes could be defined as any polynomial which satisfies the
end conditions, however, using the Jacobi polynomial P 1,1

p−1(ξ) maintains a high degree of
orthogonality and generates a local mass matrix whose interior coupling produces a penta-
diagonal system, as shown in figure 1.6(a). To appreciate why this is the case, we recall
that the elemental mass matrix Me has components given by Me[p][q] = (ψp, ψq) where we
have used the square brackets to denote the

entry of the pth row and the qth column. For the basis defined by relation (1.38) we
obtain

Me[p][q] =

∫ 1

−1

(
1−ξ
2

)(
1+ξ
2

)
P 1,1

p−1(ξ)ψq(ξ) dξ.

The function
(

1−ξ
2

)(
1+ξ
2

)
is the weight function in the orthogonality relation given by

equation (1.37) when using the polynomial P 1,1
p (ξ). Since ψq(ξ) has interior components

(i.e., 0 < q < P ) which are polynomials of order q + 1 this integral will be zero when
p− 1 > q + 1, which implies p > q + 2. As the matrix is symmetric there are two upper and
lower diagonals which are non-zero, making the matrix penta-diagonal.

As shown in figure 1.6(b), if we had chosen an interior expansion based on Legendre

polynomials Lp(ξ) = P 0,0
p (ξ) such as

(
1−ξ
2

) (
1+ξ
2

)
Lp−1(ξ) then the interior components of

the mass matrix is zero if p > q + 4. This is a consequence of the fact that the function(
1−ξ
2

)(
1+ξ
2

)
is no longer the weight function in the orthogonality relation. We see from

figure 1.6(c) that interior modes based on the form
(

1−ξ
2

) (
1+ξ
2

)
P 2,2

p−1(ξ) produce a mass

matrix with orthogonal interior components since the function ψq(ξ) also contains a factor

of the form
(

1−ξ
2

)(
1+ξ
2

)
and the P 2,2

p (ξ) polynomial is orthogonal in an inner product

containing the square of this factor. Nevertheless, with these interior modes the coupling
between the interior and the linear boundary modes is far stronger. Consideration of the
Laplacian matrix illustrates why we do not use interior functions of this form.

The elemental Laplacian matrix is defined as a matrix with components Le[p][q] =(
dψp(ξ)

dξ , dψq(ξ)
dξ

)
and arises when solving a second-order elliptic problem. The elemental

Laplacian matrix with interior modes of the form ψp(ξ) =
(

1−ξ
2

)(
1+ξ
2

)
P 1,1

p−1(ξ) is therefore:

Le[p][q] =

∫ 1

−1

d

dξ

[(
1−ξ
2

)(
1+ξ
2

)
P 1,1

p−1(ξ)
] d

dξ
ψq(ξ) dξ

= −
∫ 1

−1

(
1−ξ
2

)(
1+ξ
2

)
P 1,1

p−1(ξ)
d2

dξ2
ψq(ξ) dξ,

q=0

q=15q=15

p=0 p=15
q=0

q=15q=15

p=0 p=15
q=0

q=15q=15

p=0 p=15

(a) (b) (c)

Figure 1.6 Elemental mass matrix, M e, of one-dimensional p-type expansion of order P = 15
in Ωst = {−1 ≤ x ≤ 1} using interior components of the form: (a)

(
1−ξ
2

) (
1+ξ
2

)
P 1,1

p−1(ξ),

(b)
(

1−ξ
2

) (
1+ξ
2

)
Lp−1(ξ), (c)

(
1−ξ
2

) (
1+ξ
2

)
P 2,2

p−1(ξ).
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Figure 5: Shape of standard modal p-type expansion modes for a polynomial order of P = 5.

2.2.1 Modal expansions: p-type finite elements

As mentioned previously a modal expansion is a hierarchical expansion in which the
expansion of order P is contained within the expansion of order P + 1. The modal basis
is usually constructed using Jacobi polynomials and for continuous Galerkin methods
the most commonly used p-type modal expansion is defined as:

φp(ξ) !→ ψp(ξ) =






(
1 − ξ

2

)
p = 0

(
1 − ξ

2

) (
1 + ξ

2

)
P 1,1

p−1(ξ) 0 < p < P

(
1 + ξ

2

)
p = P

. (17)

•

2.2.2 Nodal expansions: spectral elements

• Expansion is based upon the Lagrange polynomials which are associated with a set of
nodal points.

• Nodal points must include the ends of the domain if the expansion is to be decom-
posed into boundary and interior modes.

• Choice of interior points important in the stability of the approximation and the
conditioning of the system.

• Nodal points placed at the zeros of the Gauss-Legendre-Lobatto integration rule.

2-3
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Upper Bandwidth
(P-2)+(P-3)+1

Interior-Boundary

Interior-Boundary

Interior-Interior

Boundary-Boundary
Matrix

Matrix

Matrix

Matrix

(Symmetric)(P-2)(P-1)/2

3P

Figure 2.18 The structure of the mass matrix for a triangular expansion φpq = ψa
pψb

pq of order
P1 = P2 = 14 within the standard region T 2. The boundary modes have been ordered first followed
by the interior modes. If the q index is allowed to run faster, the interior matrix has a bandwidth
of (P − 2) + (P − 3) + 1.

minimum number of modes. More interior or edge modes could be used but if they are not
increased in a consistent manner the polynomial space will not be increased. In figure 2.18
we see the structure of the mass matrix for a P1 = P2 = 14 polynomial order triangular
expansion within the standard triangular region. The matrix is ordered so the boundary
modes are first followed by the interior system. It can be shown (see 76) that if we order
the interior system so the q index runs fastest then the bandwidth of the interior system is
(P − 2) + (P − 3) + 1.

As mentioned previously, the value of α and β in the Jacobi polynomials used in the
principal functions ψi

p(z) and ψb
ij(z) were chosen to minimise the bandwidth in both the mass

and Laplacian systems. However, as noted by 27, 92 the bandwidth of the interior system
of the mass matrix can be made orthogonal by using P 2,2

i (z) in the principal function ψa
i (z)

and P 2i+3,2
j (z) in the principal function P 2i+3,2

j (z). Nevertheless, as illustrated in figure
2.19 the coupling between the interior and boundary system is stronger.

Three-Dimensional Expansions

As illustrated in figure 2.20, for the hexahedral domain the indices p, q, r correspond directlyImplementation.
note: Details of how

to construct a complete
3D modified basis from

principal functions.

to a three-dimensional array where all indices start from zero at the bottom left-hand corner.
Therefore, the vertex mode labelled A is described by φ(000) = ψa

0 (ξ1)ψa
0 (ξ2)ψa

0 (ξ3), similarly
the vertex mode labelled H is described by φ(P1,P2,P3), and the edge modes between C and
G correspond to φ0,P2,r (1 < r < P3).

When considering the prismatic domain we use the equivalent hexahedral indices. Ac-
cordingly, vertex A is now described by φ(000) = ψa

0 (ξ1)ψa
0 (η2)ψb

00(ξ3). In generating the
new coordinate system, vertex G was mapped to vertex E and therefore the vertex mode,
labelled EG in the prismatic domain, and is described by φ(0,0,P3)+φ(0,P2,P3) (that is, adding
the two vertices from the hexahedral domain which form the new vertex in the prismatic
domain). A similar addition process is necessary for the prismatic edge EG − FH which is
constructed by adding the edge modes EF (that is, φ(p,0,P3)) to the edge modes GH (that is,
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Figure 21: Construction of a fourth-order (P = 4) triangular expansion using the product
of two modified principal functions ψa

p(η1) and ψb
pq(η2). As compared with the

orthogonal expansion shown in figure 19, the modes are now decomposed into
interior and boundary contributions where the boundary modes have similar forms
along each edge.

not discuss non-tensorial expansions in this chapter, it is worth highlighting that the
electro-static nodal points by Hesthaven[38], the Fekete points of Taylor and Wingate
[39] and the geometric Gauss-Lobatto-Legendre points of Blyth and Pozrikidis [40] have
all been applied in spectral element methods and are designed to match the quadrilateral
nodal expansions.

4.2 Elemental operations and global assembly

To apply the two-dimensional expansions outlined in section 4.1 we need to be able to
integrate, differentiate and possibly assemble the expansion into a globally continuous
expansion. In the following sections we outline the key components of these operations
which relate to the isoparametric mapping of elements to a standard region, determining
the mapping metrics and global assembly of the expansion.

4.2.1 Isoparametric mapping

In sections 2.3.2 and 2.3.3 we saw how to integrate and differentiate in one-dimension and
the tensor product definition of the two-dimensional basis provides a natural extension to
determine the two-dimensional operations in the standard region Ωst (see [4] for further
details). However, in a practical implementation we need to perform these operations
in the elemental regions, Ωe, which may be of a generalised shape and orientation as
illustrated in Figure 22. To consider these cases we need to define a one-to-one mapping
between the Cartesian coordinates (x1, x2) and the local Cartesian coordinates (ξ1, ξ2)
which we denoted as

x1 = χe
1(ξ1, ξ2), x2 = χe

2(ξ1, ξ2).

For elemental shapes with straight sides a simple mapping may be constructed using
the linear vertex modes of a modified hierarchical/modal expansion. For example, to
map a triangular region [as in figure 22(a)] assuming that the global coordinates of the

4-7
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Global Assembly

• Classical continuous Galerkin FEM

• 2nd order PDE:

• C0 continuity sufficient. 

• Use boundary interior decomposition 
to make continuous expansion.

∇2u− λu = −f
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Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.

4-2

Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D

 !pq("1,"2) = #p("1) #q("2)

#p("1)

"1

"2

#q("2)

p

q

p

qa

a

a a

 !pq("1,"2) = hp("1) hq("2)

hp("1)

"1

"2

hq("2)

p

q

p

q

Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.
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Spectral/hp element methods Sec. 2: Spectral/hp elements in 1D

ũl = Aũg and ĩg = AT ĩl (where we might understand i to be an integral operation like
an inner product). The operation A scatters the global degrees of freedom to the local
elements, while AT assembles the global degrees of freedom by summing the local degrees
of freedom. We note however that ATA != I.

Lets take the following example: if Nel = 3 and P = 2 then we have Nel(P + 1) = 9
local degrees of freedom, but Nel(P + 1)− (Nel − 1) = 7 global degrees of freedom. The
scatter operation reads

ũl =





u0
0

u0
1

u0
2

u1
0

u1
1

u1
2

u2
0

u2
1

u2
2





= Aũg =





1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1










ũ0

ũ1

ũ2

ũ3

ũ4

ũ5

ũ6






.

Even though it is easy to construct A, this is not recommended, as it is a very
sparse matrix. Instead we use mapping arrays which hold the information of the global
numbering of the local degrees of freedom. The above example would then read:

map[1][p] =




0
1
2



 , map[2][p] =




2
3
4



 , map[3][p] =




4
5
6



 .

The scattering operation, ũl = Aũg, using mapping arrays is evaluated as

for e = 1 : Nel

for p = 0 : P e

ũe[p] = ũg[map[e][p]]
end

end

where P e is the polynomial order in the eth element. The assembly operation (for
example to achieve a global inner product), ĩg = AT ĩl, using mapping arrays is given by

for e = 1 : Nel

for p = 0 : P e

ĩg[map[e][p]] = ĩg[map[e][p]] + ĩe[p]
end

end

The mapping arrays are used in a similar manner when assembling global matrices.
For example, after setting all terms to zero in the global mass matrix Mg the entries can
be computed as
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ũl = Aũg and ĩg = AT ĩl (where we might understand i to be an integral operation like
an inner product). The operation A scatters the global degrees of freedom to the local
elements, while AT assembles the global degrees of freedom by summing the local degrees
of freedom. We note however that ATA != I.

Lets take the following example: if Nel = 3 and P = 2 then we have Nel(P + 1) = 9
local degrees of freedom, but Nel(P + 1)− (Nel − 1) = 7 global degrees of freedom. The
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
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u1
1

u1
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2





= Aũg =





1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1










ũ0

ũ1

ũ2

ũ3

ũ4

ũ5

ũ6






.

Even though it is easy to construct A, this is not recommended, as it is a very
sparse matrix. Instead we use mapping arrays which hold the information of the global
numbering of the local degrees of freedom. The above example would then read:

map[1][p] =




0
1
2



 , map[2][p] =




2
3
4



 , map[3][p] =




4
5
6



 .

The scattering operation, ũl = Aũg, using mapping arrays is evaluated as

for e = 1 : Nel

for p = 0 : P e

ũe[p] = ũg[map[e][p]]
end

end

where P e is the polynomial order in the eth element. The assembly operation (for
example to achieve a global inner product), ĩg = AT ĩl, using mapping arrays is given by

for e = 1 : Nel

for p = 0 : P e

ĩg[map[e][p]] = ĩg[map[e][p]] + ĩe[p]
end

end

The mapping arrays are used in a similar manner when assembling global matrices.
For example, after setting all terms to zero in the global mass matrix Mg the entries can
be computed as
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ũl = Aũg and ĩg = AT ĩl (where we might understand i to be an integral operation like
an inner product). The operation A scatters the global degrees of freedom to the local
elements, while AT assembles the global degrees of freedom by summing the local degrees
of freedom. We note however that ATA != I.

Lets take the following example: if Nel = 3 and P = 2 then we have Nel(P + 1) = 9
local degrees of freedom, but Nel(P + 1)− (Nel − 1) = 7 global degrees of freedom. The
scatter operation reads

ũl =




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2





= Aũg =


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0 0 1 0 0 0 0
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




ũ0

ũ1

ũ2

ũ3

ũ4
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




.

Even though it is easy to construct A, this is not recommended, as it is a very
sparse matrix. Instead we use mapping arrays which hold the information of the global
numbering of the local degrees of freedom. The above example would then read:

map[1][p] =




0
1
2



 , map[2][p] =




2
3
4



 , map[3][p] =




4
5
6



 .

The scattering operation, ũl = Aũg, using mapping arrays is evaluated as

for e = 1 : Nel

for p = 0 : P e

ũe[p] = ũg[map[e][p]]
end

end

where P e is the polynomial order in the eth element. The assembly operation (for
example to achieve a global inner product), ĩg = AT ĩl, using mapping arrays is given by

for e = 1 : Nel

for p = 0 : P e

ĩg[map[e][p]] = ĩg[map[e][p]] + ĩe[p]
end

end

The mapping arrays are used in a similar manner when assembling global matrices.
For example, after setting all terms to zero in the global mass matrix Mg the entries can
be computed as
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all global coefficients: ũg = [ũ1 , ũ2 , . . . , ũNdof ]T . Subsequently, an assembly matrix,
A, can be defined containing the relationship between the local and global modes, i.e.
ũl = Aũg and ĩg = AT ĩl (where we might understand i to be an integral operation like
an inner product). The operation A scatters the global degrees of freedom to the local
elements, while AT assembles the global degrees of freedom by summing the local degrees
of freedom. We note however that ATA != I.

Lets take the following example: if Nel = 3 and P = 2 then we have Nel(P + 1) = 9
local degrees of freedom, but Nel(P + 1)− (Nel − 1) = 7 global degrees of freedom. The
scatter operation reads

ũl =






u1
0

u1
1

u1
2

u2
0

u2
1

u2
2

u3
0

u3
1

u3
2






= Aũg =






1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1











ũ0

ũ1

ũ2

ũ3

ũ4

ũ5

ũ6






.

Even though it is easy to construct A, this is not recommended, as it is a very
sparse matrix. Instead we use mapping arrays which hold the information of the global
numbering of the local degrees of freedom. The above example would then read:

map[1][p] =




0
1
2



 , map[2][p] =




2
3
4



 , map[3][p] =




4
5
6



 .

The scattering operation, ũl = Aũg, using mapping arrays is evaluated as

for e = 1 : Nel

for p = 0 : P e

ũe[p] = ũg[map[e][p]]
end

end

where P e is the polynomial order in the eth element. The assembly operation (for
example to achieve a global inner product), ĩg = AT ĩl, using mapping arrays is given by

for e = 1 : Nel

for p = 0 : P e

ĩg[map[e][p]] = ĩg[map[e][p]] + ĩe[p]
end

end

The mapping arrays are used in a similar manner when assembling global matrices.
For example, after setting all terms to zero in the global mass matrix Mg the entries can
be computed as
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ũl = Aũg and ĩg = AT ĩl (where we might understand i to be an integral operation like
an inner product). The operation A scatters the global degrees of freedom to the local
elements, while AT assembles the global degrees of freedom by summing the local degrees
of freedom. We note however that ATA != I.

Lets take the following example: if Nel = 3 and P = 2 then we have Nel(P + 1) = 9
local degrees of freedom, but Nel(P + 1)− (Nel − 1) = 7 global degrees of freedom. The
scatter operation reads

ũl =





u0
0

u0
1

u0
2

u1
0

u1
1

u1
2

u2
0

u2
1

u2
2





= Aũg =





1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1










ũ0

ũ1

ũ2

ũ3

ũ4

ũ5

ũ6






.

Even though it is easy to construct A, this is not recommended, as it is a very
sparse matrix. Instead we use mapping arrays which hold the information of the global
numbering of the local degrees of freedom. The above example would then read:

map[1][p] =




0
1
2



 , map[2][p] =




2
3
4



 , map[3][p] =




4
5
6



 .

The scattering operation, ũl = Aũg, using mapping arrays is evaluated as

for e = 1 : Nel

for p = 0 : P e

ũe[p] = ũg[map[e][p]]
end

end

where P e is the polynomial order in the eth element. The assembly operation (for
example to achieve a global inner product), ĩg = AT ĩl, using mapping arrays is given by

for e = 1 : Nel

for p = 0 : P e

ĩg[map[e][p]] = ĩg[map[e][p]] + ĩe[p]
end

end

The mapping arrays are used in a similar manner when assembling global matrices.
For example, after setting all terms to zero in the global mass matrix Mg the entries can
be computed as
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ũl = Aũg and ĩg = AT ĩl (where we might understand i to be an integral operation like
an inner product). The operation A scatters the global degrees of freedom to the local
elements, while AT assembles the global degrees of freedom by summing the local degrees
of freedom. We note however that ATA != I.
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.

Even though it is easy to construct A, this is not recommended, as it is a very
sparse matrix. Instead we use mapping arrays which hold the information of the global
numbering of the local degrees of freedom. The above example would then read:

map[1][p] =




0
1
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
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
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4


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
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 .

The scattering operation, ũl = Aũg, using mapping arrays is evaluated as

for e = 1 : Nel

for p = 0 : P e

ũe[p] = ũg[map[e][p]]
end

end

where P e is the polynomial order in the eth element. The assembly operation (for
example to achieve a global inner product), ĩg = AT ĩl, using mapping arrays is given by

for e = 1 : Nel

for p = 0 : P e

ĩg[map[e][p]] = ĩg[map[e][p]] + ĩe[p]
end

end

The mapping arrays are used in a similar manner when assembling global matrices.
For example, after setting all terms to zero in the global mass matrix Mg the entries can
be computed as
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for e = 1 : Nel

for p = 0 : P e

for q = 0 : P e

Mg[map[e][p]][map[e][q]] = Mg[map[e][p]][map[e][q]] + Me[p][q]
end

end
end

(39)

2.6 Eigenspectrum analysis

The eigenspectrum of the semi-discrete operators are important in a number of ways,
one of the most immediate is how the largest eigenvalue, λmax, must be scaled by the
time step ∆t to assure that λmax∆t lies within the stability region of an explicit time
stepping scheme.

We consider the linear advection equation

∂u

∂t
+

∂u

∂x
= 0 ,

in x ∈ [−1, 1] with periodic boundary conditions and an equi-spaced mesh of 10 elements.
We discretize in space using the spectral/hp element method and write the resulting
semi-discrete equations in matrix form as

Mg

∂ũg

∂t
+ Dgũg = 0 . (40)

where Mg and Dg are the global mass and derivative matrices, respectively.
For the continuous case Mg and Dg are given by eqs. (30) and (33) and the assembly

is defined in (39). For the DG method we first note that ũg = ũl and that the global
matrices are defined as

Mg =






M1 0 · · · 0
0 M2 · · · 0

0 0
. . . 0

0 · · · 0 MNel






,

Dg =






Q1 (1 − αe
u)G

1 0 · · · (1 − αe
l )F

1

(1 − αe
l )F

2 Q2 (1 − αe
u)G

2 · · · 0

0
. . . . . . . . . 0

0 · · · (1 − αe
l )F

Nel QNel (1 − αe
u)G

Nel

(1 − αe
u)G

Nel · · · 0 (1 − αe
l )F

Nel QNel






,

where Qe = De + (αe
u − 1)He + (αe

l − 1)Ee. According to eq. (9) αe
u = 1 and αe

l = 0 for
an upwinded flux. Setting αe

u = αe
l = 0.5 gives centred fluxes.

We are interested in the eigenspectrum of the operator (M−1
g Dg) and in Figure 14

we show the eigenvalues for the continuous and discontinuous Galerkin formulations,
respectively, using the modal basis ψ(ξ). The eigenvalues are purely imaginary for the
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for e = 1 : Nel

for p = 0 : P e

for q = 0 : P e

Mg[map[e][p]][map[e][q]] = Mg[map[e][p]][map[e][q]] + Me[p][q]
end

end
end

(39)

2.6 Eigenspectrum analysis

The eigenspectrum of the semi-discrete operators are important in a number of ways,
one of the most immediate is how the largest eigenvalue, λmax, must be scaled by the
time step ∆t to assure that λmax∆t lies within the stability region of an explicit time
stepping scheme.

We consider the linear advection equation

∂u

∂t
+

∂u

∂x
= 0 ,

in x ∈ [−1, 1] with periodic boundary conditions and an equi-spaced mesh of 10 elements.
We discretize in space using the spectral/hp element method and write the resulting
semi-discrete equations in matrix form as

Mg

∂ũg

∂t
+ Dgũg = 0 . (40)

where Mg and Dg are the global mass and derivative matrices, respectively.
For the continuous case Mg and Dg are given by eqs. (30) and (33) and the assembly

is defined in (39). For the DG method we first note that ũg = ũl and that the global
matrices are defined as

Mg =






M1 0 · · · 0
0 M2 · · · 0

0 0
. . . 0

0 · · · 0 MNel






,

Dg =






Q1 (1 − αe
u)G

1 0 · · · (1 − αe
l )F

1

(1 − αe
l )F

2 Q2 (1 − αe
u)G

2 · · · 0

0
. . . . . . . . . 0

0 · · · (1 − αe
l )F

Nel QNel (1 − αe
u)G

Nel

(1 − αe
u)G

Nel · · · 0 (1 − αe
l )F

Nel QNel






,

where Qe = De + (αe
u − 1)He + (αe

l − 1)Ee. According to eq. (9) αe
u = 1 and αe

l = 0 for
an upwinded flux. Setting αe

u = αe
l = 0.5 gives centred fluxes.

We are interested in the eigenspectrum of the operator (M−1
g Dg) and in Figure 14

we show the eigenvalues for the continuous and discontinuous Galerkin formulations,
respectively, using the modal basis ψ(ξ). The eigenvalues are purely imaginary for the
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all global coefficients: ũg = [ũ1 , ũ2 , . . . , ũNdof ]T . Subsequently, an assembly matrix,
A, can be defined containing the relationship between the local and global modes, i.e.
ũl = Aũg and ĩg = AT ĩl (where we might understand i to be an integral operation like
an inner product). The operation A scatters the global degrees of freedom to the local
elements, while AT assembles the global degrees of freedom by summing the local degrees
of freedom. We note however that ATA != I.

Lets take the following example: if Nel = 3 and P = 2 then we have Nel(P + 1) = 9
local degrees of freedom, but Nel(P + 1)− (Nel − 1) = 7 global degrees of freedom. The
scatter operation reads

ũl =






u1
0

u1
1

u1
2

u2
0

u2
1

u2
2

u3
0

u3
1

u3
2






= Aũg =






1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1











ũ0

ũ1

ũ2

ũ3

ũ4

ũ5

ũ6






.

Even though it is easy to construct A, this is not recommended, as it is a very
sparse matrix. Instead we use mapping arrays which hold the information of the global
numbering of the local degrees of freedom. The above example would then read:

map[1][p] =




0
1
2



 , map[2][p] =




2
3
4



 , map[3][p] =




4
5
6



 .

The scattering operation, ũl = Aũg, using mapping arrays is evaluated as

for e = 1 : Nel

for p = 0 : P e

ũe[p] = ũg[map[e][p]]
end

end

where P e is the polynomial order in the eth element. The assembly operation (for
example to achieve a global inner product), ĩg = AT ĩl, using mapping arrays is given by

for e = 1 : Nel

for p = 0 : P e

ĩg[map[e][p]] = ĩg[map[e][p]] + ĩe[p]
end

end

The mapping arrays are used in a similar manner when assembling global matrices.
For example, after setting all terms to zero in the global mass matrix Mg the entries can
be computed as
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0

u1
u2 u3

u4

u5

u6

u1
1

u2
1

u1
2

u1
3

u2
3

Ω1
Ω3Ω2
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2 u0
3

u2
2
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0 21 0 210 21
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