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Ch. 1 Fundamental Concepts in One Dimension 11

The finite element approximation uδ(x) = gDΦ0(x) + û1Φ1(x) + û2Φ2(x) is therefore:
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Having gone through the worked example we might now question what components
are required to construct a general Galerkin approximation based on multiple elemental
decompositions of the solution domain. Implicit in the implementation of this example was
the assumption that we can differentiate and integrate the basis functions over the solution
domain. In general, it is not practical analytically to integrate and differentiate and so we
adopt numerical rules to be discussed in sections 1.4.1 and 1.4.2. However, to make this
possible we must develop techniques to treat each element separately and thus permit us to
automate the implementation. The construction of local elemental bases and assembly of
these into a global definition will be discussed in section 1.3.

1.2.3 Mathematical Formulation

In this section we shall construct the Galerkin approximation to a linear partial differential
equation, similar to that discussed in section 1.2.1, in a more mathematical framework. We
consider the more general one-dimensional Helmholtz equation

L(u) =
∂2u

∂x2
− λu + f = 0, (1.17)

where λ is a real positive constant. The equation is presumed to be supplemented with
appropriate boundary conditions such as

u(0) = gD,
∂u

∂x
(l) = gN .

As indicated by the boundary conditions, we wish to determine the solution in the interval
0 < x < l which we shall denote by Ω.

Multiplying equation (1.17) by an arbitrary test function v(x), the properties of which
are to be defined, and integrating over the domain Ω we obtain:
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then equation (1.18) can be written as

a(v, u) = f(v). (1.19)
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Poisson Equation:

Weak formulation:
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Having gone through the worked example we might now question what components
are required to construct a general Galerkin approximation based on multiple elemental
decompositions of the solution domain. Implicit in the implementation of this example was
the assumption that we can differentiate and integrate the basis functions over the solution
domain. In general, it is not practical analytically to integrate and differentiate and so we
adopt numerical rules to be discussed in sections 1.4.1 and 1.4.2. However, to make this
possible we must develop techniques to treat each element separately and thus permit us to
automate the implementation. The construction of local elemental bases and assembly of
these into a global definition will be discussed in section 1.3.

1.2.3 Mathematical Formulation

In this section we shall construct the Galerkin approximation to a linear partial differential
equation, similar to that discussed in section 1.2.1, in a more mathematical framework. We
consider the more general one-dimensional Helmholtz equation

L(u) =
∂2u

∂x2
− λu + f = 0, (1.17)

where λ is a real positive constant. The equation is presumed to be supplemented with
appropriate boundary conditions such as

u(0) = gD,
∂u

∂x
(l) = gN .

As indicated by the boundary conditions, we wish to determine the solution in the interval
0 < x < l which we shall denote by Ω.

Multiplying equation (1.17) by an arbitrary test function v(x), the properties of which
are to be defined, and integrating over the domain Ω we obtain:

∫ l

0
v
∂2u

∂x2
−

∫ l

0
λvu dx +

∫ l

0
vf dx = 0.

Providing u(x) and v(x) are sufficiently smooth, we can integrate the first term by parts to
arrive at: ∫ l

0

∂v

∂x

∂u

∂x
+

∫ l

0
λvu dx =

∫ l

0
vf dx +
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v
∂u

∂x
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0

. (1.18)
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+ λvu
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]l

0

,

then equation (1.18) can be written as

a(v, u) = f(v). (1.19)
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find
uδ = uD + uH where uH ∈ Vδ, uδ ∈ X δ

such that

a(vδ, uH) = f∗(vδ) for all vδ ∈ Vδ (1.23)

where
f∗(vδ) = f(vδ) − a(vδ, uD).

For this linear equation another way of constructing the Galerkin solution is from a
variational point of view. Equation (1.17) is the minimal solution to the functional

F(v) =

∫ l

0

[(
∂v

∂x

)2

+ λ (v)2 − 2vf

]

dx.

Therefore, if we minimise F(v) over the infinite dimensional space V we will find the solution
to equation (1.17) which is the Euler equation of this functional. Replacing the variational
problem by a finite dimensional subspace Vδ leads to the Ritz-Galerkin method (see Strang

and Fix 81).

1.2.4 Mathematical Properties of the Galerkin Approximation

In this section we introduce some significant properties of the Galerkin approximation. We
consider the approximation uδ to the solution u where uδ ∈ X δ and satisfies

a(vδ, uδ) = f(vδ), ∀ vδ ∈ Vδ. (1.24)

We mention that a(v, u) is a symmetric, bilinear form which means

a(v, u) = a(u, v) (1.25a)

a(c1v + c2w, u) = c1a(v, u) + c2a(w, u), (1.25b)

where c1 and c2 are constants and u, v and w are functions. Further, the operator a(v, u) is
said to be continuous (or bounded) if

|a(v, u)| ≤ C1||v||1||u||1, (1.25c)

where C1 < ∞ and the subscript denotes the norm in H1. It is elliptic (or coercive) if

a(u, u) ≥ C2||u||21 (1.25d)

where C2 > 0.
We note that equation (1.24) is equivalent to equation (1.23) since a(vδ, uδ) = a(vδ, uD)+

a(vδ, uH) using the bilinearity of a(v, u) [equation (1.25b)].
If a(vδ, uδ) is a continuous, elliptic, bilinear form that is not necessarily symmetric and

f(vδ) is in the dual space of Vδ then the Lax-Milgram theorem guarantees both existence

and uniqueness of the solution of the Galerkin problem (1.24) (see Brenner and Scott 15).

1.2.4.1 Uniqueness

To show that the solution uδ is unique we assume that there are two distinct solutions u1

and u2 (u1, u2 ∈ X δ) which satisfy

a(vδ, u1) = f(vδ), for all vδ ∈ Vδ (1.26a)

and
a(vδ, u2) = f(vδ), for all vδ ∈ Vδ. (1.26b)

Lift BC:
(Homogenize problem)

f∗ = f − v(l)gN −
∂vD

∂x

∂uD

∂x
+ λvHuH

∫ l

0

∂vH

∂x

∂uH

∂x
dx + λ

∫ l

0
vHuHdx =

∫
vf∗dx
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∂uH

∂x
dx + λ

∫ l
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vHuHdx =

∫
vf∗dx
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Figure 1.3 Global and local expansion coefficient and bases in a three element decomposition of
the domain Ω.

The relationship between the local and global expansion coefficients is therefore

û1
0 = û0

û1
1 = û2

0 = û1

û2
1 = û3

0 = û2

û3
1 = û3.

In this example, it can be seen that the local representation of the function has 6 elemental
degrees of freedom [(Neof = Nel · (P + 1) = 6)] but only 4 global degrees of freedom
(Ndof = 4). The two constraints shown in (1.32) ensure that uδ(x) is C0 continuous, which
is a sufficient condition to ensure that the expansion is in H1 space and thereby can be an
admissible function for the trial space X δ for a second-order elliptic problem.

To construct a more general description of the local to global mapping we let ûg denote
a vector of all global coefficients,

ûg = [û0, . . . , ûNdof−1]
T ,

and if ûe is a vector of the local coefficients (that is, ûe = [ûe
0, û

e
1]) in element e, then the

vector of all local coefficients, denoted by ûl can be written as

ûl =





û1

û2

· · ·
ûNel



 .

Discrete Approximation
u⇒ uδ =

∑

i

ûiΦi(x)

v ⇒ vδ =
∑

i

v̂iΦi(x)

Global approximation - C0
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In this example, it can be seen that the local representation of the function has 6 elemental
degrees of freedom [(Neof = Nel · (P + 1) = 6)] but only 4 global degrees of freedom
(Ndof = 4). The two constraints shown in (1.32) ensure that uδ(x) is C0 continuous, which
is a sufficient condition to ensure that the expansion is in H1 space and thereby can be an
admissible function for the trial space X δ for a second-order elliptic problem.

To construct a more general description of the local to global mapping we let ûg denote
a vector of all global coefficients,

ûg = [û0, . . . , ûNdof−1]
T ,

and if ûe is a vector of the local coefficients (that is, ûe = [ûe
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1]) in element e, then the
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ûl =
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Local approximation
Global assembly

uH(0) = 0uD(0) = gD Local P-modes
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Figure 5: Shape of standard modal p-type expansion modes for a polynomial order of P = 5.

2.2.1 Modal expansions: p-type finite elements

As mentioned previously a modal expansion is a hierarchical expansion in which the
expansion of order P is contained within the expansion of order P + 1. The modal basis
is usually constructed using Jacobi polynomials and for continuous Galerkin methods
the most commonly used p-type modal expansion is defined as:

φp(ξ) !→ ψp(ξ) =






(
1 − ξ

2

)
p = 0

(
1 − ξ

2

) (
1 + ξ

2

)
P 1,1

p−1(ξ) 0 < p < P

(
1 + ξ

2

)
p = P

. (17)

•

2.2.2 Nodal expansions: spectral elements

• Expansion is based upon the Lagrange polynomials which are associated with a set of
nodal points.

• Nodal points must include the ends of the domain if the expansion is to be decom-
posed into boundary and interior modes.

• Choice of interior points important in the stability of the approximation and the
conditioning of the system.

• Nodal points placed at the zeros of the Gauss-Legendre-Lobatto integration rule.

2-3
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The relationship between the local and global expansion coefficients is therefore
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In this example, it can be seen that the local representation of the function has 6 elemental
degrees of freedom [(Neof = Nel · (P + 1) = 6)] but only 4 global degrees of freedom
(Ndof = 4). The two constraints shown in (1.32) ensure that uδ(x) is C0 continuous, which
is a sufficient condition to ensure that the expansion is in H1 space and thereby can be an
admissible function for the trial space X δ for a second-order elliptic problem.

To construct a more general description of the local to global mapping we let ûg denote
a vector of all global coefficients,

ûg = [û0, . . . , ûNdof−1]
T ,

and if ûe is a vector of the local coefficients (that is, ûe = [ûe
0, û

e
1]) in element e, then the

vector of all local coefficients, denoted by ûl can be written as

ûl =





û1

û2

· · ·
ûNel


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Discrete spaces
u⇒ uδ =

∑

i

ûiΦi(x)

v ⇒ vδ =
∑

i

v̂iΦi(x)
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0 = û2
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e
1]) in element e, then the

vector of all local coefficients, denoted by ûl can be written as
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Local approximation
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uH(0) = 0uD(0) = gD

∑
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v̂j





∑

j

∫ l

0

[
∂ΦHi
∂x

∂ΦHj
∂x

+ λΦHi ΦHj

]
ûj dx =
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ΦHi f∗dx






L[i][j] M[i][j] f [i]

Local P-modes
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2.2.1 Modal expansions: p-type finite elements

As mentioned previously a modal expansion is a hierarchical expansion in which the
expansion of order P is contained within the expansion of order P + 1. The modal basis
is usually constructed using Jacobi polynomials and for continuous Galerkin methods
the most commonly used p-type modal expansion is defined as:
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•

2.2.2 Nodal expansions: spectral elements

• Expansion is based upon the Lagrange polynomials which are associated with a set of
nodal points.

• Nodal points must include the ends of the domain if the expansion is to be decom-
posed into boundary and interior modes.

• Choice of interior points important in the stability of the approximation and the
conditioning of the system.

• Nodal points placed at the zeros of the Gauss-Legendre-Lobatto integration rule.
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ûe
pqφ

e
pq(x1, x2)

)

(6)

(7)

1

LocalRegionsSpatialDomainsStdRegions

MultiRegions

=
∫

Φif
∗dx =

nel∑

e

∑

p

∫

Ωe

φp(x)f∗dx

ξ1 (1)

ξ2 (2)

x1 (3)

x2 (4)

uδ(x1, x2) =
P1∑

p=0

P2∑

q=0

ûpqφpq(x1, x2) (5)

(6)

1

A

B

=
nel∑

e

∑

p

∫

Ωe

φp(χe(ξ))f∗Jedξ



Nektar++

Putting it all together
∑

i

v̂j





∑

j

∫ l

0

[
∂ΦHi
∂x

∂ΦHj
∂x

+ λΦHi ΦHj

]
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Figure 3.4 A general curved element can be described in terms of a series of parametric functions
fA(ξ1), fB(ξ2), fC(ξ1), and fD(ξ2). Representing these functions as a discrete expansion we can
construct an iso-parametric mapping χi(ξ1, ξ2) relating the standard region (ξ1, ξ2) to the deformed
region (x1, x2).

the hierarchical modal expansion. For example, a quadrilateral domain of the form shown
in figure 3.2(b) the mapping can be defined by equation (3.37).

We note that this simply involves the vertex modes of the modified hierarchical expansion
basis within a quadrilateral domain (see section 2.1.1). We could, therefore, have written
the expansion as
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The construction of a mapping based upon the expansion modes in this form can be
extended to include curved sided regions using an isoparametric representation. In this
technique the geometry is represented with an expansion of the same form and polynomial
order as the unknown variables.

To describe a straight-sided region we needed only to know the values of the vertex
locations. To describe a curved region, however, requires more information. As illustrated
in figure 3.4, we typically expect to have a definition of a mapping of the shape of each edge
in terms of the local coordinates which we denote as fA

i (ξ1), fB
i (ξ2), fC

i (ξ1) and fD
i (ξ2). The

process of defining the mapping functions can be considered as part of the mesh generation
process, the discussion of which is in section 3.3.3.

Knowing the definition of the edges (or faces in three-dimensions) a mapping for a
curvilinear domains can be determined using the isoparametric form of equation (3.38)
to include more non-zero expansion coefficients than simply the vertex contributions. In
two-dimensions we wish to use the coefficient along each edge of the element, and in three-
dimensions we can use the face coefficients as well. Along each edge we therefore need to
approximate the shape mapping fi(ξ) if it is not already represented by a polynomial of
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Figure 3.9 Illustration of local to global assembly. If we have a global expansion as represented
in figure (a) it can be decomposed into two elemental contributions multiplied by the same global
coefficient û. To integrate a function u(x1, x2) with respect to the global mode, as illustrated in
figure (b), the integration in the global region is the sum of the integration in the local regions.

1. Formulate a Galerkin elemental problem with respect to a set of global modes which
constitute our trial space X .

2. Split each global mode into local contributions over every element where all operations
are performed.

3. Re-assemble the global system.

When we split the global expansion modes, as shown in figure 3.9(a), into their local
elemental contributions the expansion coefficient û is transmitted to both of the elemental
regions. However, when we need to integrate this global expansion mode with respect to
some function u(x1, x2) as shown in figure 3.9(b), this may be performed locally with respect
to the elemental modes and then summed together to obtain the integral of u(x1, x2) with
respect to the global mode.

We recall that the Galerkin method is constructed from the weak problem which is an
integral form. We do not need explicitly to assemble the global expansion modes as we can
treat the integration locally and sum the elemental contributions. Nevertheless, in order to
describe the solution within the elemental region we will need first to perform the one-to-
many mapping which takes the global system to the local elemental system. The assembly
process is referred to as direct stiffness summation or global assembly. The word summation
is somewhat misleading as only adjacent boundary modes of similar shape need to be added
together and so we shall refer to the process as global assembly.

We define the local degrees of freedom as all the elemental expansion coefficients over
all elements. We have previously introduced the vector û to represent a consecutive list of
all expansion modes within an elemental region. If we now use a superscript e to denote
the elemental vector of expansion coefficients ûe then the vector of all the local degrees of
freedom, denoted by ûl, is,

ûl = ûe =





û1

û2

...
ûNel




, (3.78)

which is of dimension Neof . We also introduce the notation that an underlined vector implies
the extension over all elemental regions. In section 3.2.2 we will see that an underlined

Figure 3.9 
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Figure 1.3 Global and local expansion coefficient and bases in a three element decomposition of
the domain Ω.

The relationship between the local and global expansion coefficients is therefore

û1
0 = û0

û1
1 = û2

0 = û1

û2
1 = û3

0 = û2

û3
1 = û3.

In this example, it can be seen that the local representation of the function has 6 elemental
degrees of freedom [(Neof = Nel · (P + 1) = 6)] but only 4 global degrees of freedom
(Ndof = 4). The two constraints shown in (1.32) ensure that uδ(x) is C0 continuous, which
is a sufficient condition to ensure that the expansion is in H1 space and thereby can be an
admissible function for the trial space X δ for a second-order elliptic problem.

To construct a more general description of the local to global mapping we let ûg denote
a vector of all global coefficients,

ûg = [û0, . . . , ûNdof−1]
T ,

and if ûe is a vector of the local coefficients (that is, ûe = [ûe
0, û

e
1]) in element e, then the

vector of all local coefficients, denoted by ûl can be written as

ûl =





û1

û2

· · ·
ûNel



 .
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as the operation A scatters the global degrees of freedom to the local elements. A
T , however,

assembles the global contribution by summing together various terms of the local degrees of
freedom.

A and A
T represent key operations required in the construction of a Galerkin spectral/hp

element method since they permit us to define a series of local operators which can then be
assembled using these operators. It can be appreciated that only global modes which are
split into elemental contributions will have multiple entries in the columns of the A matrix.
When using a higher order p-type expansion, as discussed in section 1.3.2.1, the extra inte-
rior modes are all global degrees of freedom and will not need to be assembled in this fashion.

In practice we never construct the assembly matrix A as it is very sparse and thereforeImplementation.
note: Construction of

a mapping array for
global to local scatter

and local to global
assembly.

numerically very inefficient to use it as a matrix operator. An equivalent numerical operation
is to use a mapping array for each element which contains the global location of every local
degree of freedom. If we denote this array by “map[e][i]” where e denotes the element and
i is the local mode index, then for the example in figure 1.3 the array would be defined as:

map[1][i] =

{
0
1

}
map[2][i] =

{
1
2

}
map[3][i] =

{
2
3

}
.

The scatter operation denoted by A [see equation (1.33a)] can then be evaluated as

Do e = 1, Nel

Do i = 0, Ne
m − 1

ûe[i] = ûg[map[e][i]]
continue

continue






⇔ ûl = Aûg,

where Ne
m = P e + 1. Alternatively, the global assembly operation may be written as

Do e = 1, Nel

Do i = 0, Ne
m − 1

ûg[map[e][i]] = ûg[map[e][i]] + ûe[i]
continue

continue






⇔ ûg = A
T ûl

1.3.2 Polynomial Expansions: The p-Type Extension

In multiple dimensions, complex domains make it difficult to identify global expansions
analytically. The introduction of complex geometries can also generate different scales in
the solution, which may have a very localised structure. Such considerations require the
use of elemental decomposition as discussed in section 1.3.1. Therefore, if we decompose
the solution domain into elemental regions which broadly capture either the geometry or
the local scale of the problem the application of the p-type extension can prove to be a
numerically efficient approach to achieving a very accurate solution. In all that follows we
will interpret the p-type extension as increasing the order of the polynomial expansion within
an elemental region.

Before discussing the different types of p-type extension, we first define the hp element
space in one-dimension. Recalling the definition of the standard element, Ωst, and the
coordinate mapping χe(ξ) from Ωst to an elemental region Ωe we start by denoting the
space of all polynomials of degree P defined on the standard element Ωst by PP (Ωst). The
discrete hp expansion space X δ is the set of all functions uδ(x) which exist in H1 and that
are polynomials in ξ within every element [e.g., uδ(χe(ξ)) ∈ PP (Ωst)], which is formally
written as

X δ = {uδ | uδ ∈ H1, uδ(χe(ξ)) ∈ PP e(Ωst), e = 1, . . . , Nel}. (1.34)
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1.3.2 Polynomial Expansions: The p-Type Extension

In multiple dimensions, complex domains make it difficult to identify global expansions
analytically. The introduction of complex geometries can also generate different scales in
the solution, which may have a very localised structure. Such considerations require the
use of elemental decomposition as discussed in section 1.3.1. Therefore, if we decompose
the solution domain into elemental regions which broadly capture either the geometry or
the local scale of the problem the application of the p-type extension can prove to be a
numerically efficient approach to achieving a very accurate solution. In all that follows we
will interpret the p-type extension as increasing the order of the polynomial expansion within
an elemental region.

Before discussing the different types of p-type extension, we first define the hp element
space in one-dimension. Recalling the definition of the standard element, Ωst, and the
coordinate mapping χe(ξ) from Ωst to an elemental region Ωe we start by denoting the
space of all polynomials of degree P defined on the standard element Ωst by PP (Ωst). The
discrete hp expansion space X δ is the set of all functions uδ(x) which exist in H1 and that
are polynomials in ξ within every element [e.g., uδ(χe(ξ)) ∈ PP (Ωst)], which is formally
written as

X δ = {uδ | uδ ∈ H1, uδ(χe(ξ)) ∈ PP e(Ωst), e = 1, . . . , Nel}. (1.34)

Ie[i]f[map[e][i]] f[map[e][i]]

=
nel∑

e

∑

p

∫

Ωe

φp(χe(ξ))f∗JedξIe[i]

=
∫

Φif
∗dxf[i]

Course Notes: Sections 1.3.1.4 & 3.2.1
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i

v̂j





∑

j

∫ l

0

[
∂ΦHi
∂x

∂ΦHj
∂x

+ λΦHi ΦHj

]
ûj dx =

∫
ΦHi f∗dx






C

D

ξ1 (1)

ξ2 (2)

(3)

1

ξ1 (1)

ξ2 (2)

(3)

1
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where

u′
p =

P∑

q=0

uq
∂hq

∂ξ
(ξ)

∣∣∣∣
ξp

.

This is very significant when calculating non-linear terms such as the advection operator in
the Navier-Stokes equation. For example, to determine the value of the non-linear product

uδ(ξ)
∂uδ

∂ξ
(ξ)

at a point ξi we have:

uδ(ξi)
∂uδ

∂ξ
(ξi) =

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

uq
∂hq

∂ξ
(ξi)

)

=

(
P∑

p=0

uphp(ξi)

)(
P∑

q=0

u′
qhq(ξi)

)

.

Since hp(ξi) = δpi and hq(ξi) = δqi then

uδ(ξi)
∂uδ

∂ξ
(ξi) = uiu

′
i.

Finally, we can represent our nonlinear product in terms of an expansion of Lagrange poly-
nomials as

uδ(ξ)
∂uδ

∂ξ
(ξ) !

P∑

p=0

upu
′
php(ξ).

We note however that if uδ(ξ) is a polynomial of order P then the non-linear product

uδ(ξ)∂uδ

∂ξ (ξ) is a polynomial of order (2P − 1) and so it cannot be exactly represented by

the Lagrange polynomial expansion of order P . At the nodal points the coefficient upu′
p will

be identical to the value of uδ(ξp)∂uδ

∂ξ (ξp). Nevertheless, projecting the non-linear terms to
a lower polynomial order in this fashion can lead to aliasing errors as discussed in section
1.4.1.2.

Although this example is in one-dimension, the same properties apply in multiple di-
mensions provided the expansion can be represented by a tensor product of Lagrange poly-
nomials. Using the collapsed Cartesian coordinates systems described in section 2.2.1 it
is possible to represent any polynomial expansion as a tensor product of one-dimensional
Lagrange polynomials.

3.1.2.1 Two Dimensions Differentiation in the Standard Regions, Ωst

Implementation.
note: Numerical
differentiation in Ωst:
Quadrilateral and
triangular regions.

Quadrilateral Region

To differentiate an expansion within the standard quadrilateral region Q2 of the form:

uδ(ξ1, ξ2) =
P1∑

p=0

P2∑

q=0

ûpqφpq(ξ1, ξ2),

we first represent the function in terms of Lagrange polynomials so

uδ(ξ1, ξ2) =
Q1−1∑

p=0

Q2−1∑

q=0

upq hp(ξ1)hq(ξ2),
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Figure 3.4 A general curved element can be described in terms of a series of parametric functions
fA(ξ1), fB(ξ2), fC(ξ1), and fD(ξ2). Representing these functions as a discrete expansion we can
construct an iso-parametric mapping χi(ξ1, ξ2) relating the standard region (ξ1, ξ2) to the deformed
region (x1, x2).

the hierarchical modal expansion. For example, a quadrilateral domain of the form shown
in figure 3.2(b) the mapping can be defined by equation (3.37).

We note that this simply involves the vertex modes of the modified hierarchical expansion
basis within a quadrilateral domain (see section 2.1.1). We could, therefore, have written
the expansion as

xi = χi(ξ1, ξ2) =
p=P1∑

p=0

q=P2∑

q=0

x̂i
pqφpq(ξ1, ξ2) (3.38)

where φpq = ψa
p (ξ1)ψa

q (ξ2) and x̂i
pq = 0 except for the vertex modes which have a value of

x̂i
00 = xA

i x̂i
P10 = xB

i x̂i
P1P2

= xC
i x̂i

0P2
= xD

i .

The construction of a mapping based upon the expansion modes in this form can be
extended to include curved sided regions using an isoparametric representation. In this
technique the geometry is represented with an expansion of the same form and polynomial
order as the unknown variables.

To describe a straight-sided region we needed only to know the values of the vertex
locations. To describe a curved region, however, requires more information. As illustrated
in figure 3.4, we typically expect to have a definition of a mapping of the shape of each edge
in terms of the local coordinates which we denote as fA

i (ξ1), fB
i (ξ2), fC

i (ξ1) and fD
i (ξ2). The

process of defining the mapping functions can be considered as part of the mesh generation
process, the discussion of which is in section 3.3.3.

Knowing the definition of the edges (or faces in three-dimensions) a mapping for a
curvilinear domains can be determined using the isoparametric form of equation (3.38)
to include more non-zero expansion coefficients than simply the vertex contributions. In
two-dimensions we wish to use the coefficient along each edge of the element, and in three-
dimensions we can use the face coefficients as well. Along each edge we therefore need to
approximate the shape mapping fi(ξ) if it is not already represented by a polynomial of

x1

x2

ξ1 (1)

ξ2 (2)

x1 (3)

x2 (4)

uδ(x1, x2) =
P1
∑

p=0

P2
∑

q=0

ûpqφpq(x1, x2) (5)

uδ(x1, x2) =
Nel
∑

e=1

(

P1
∑

p=0

P2
∑

q=0

ûe
pqφ

e
pq(x1, x2)

)

(6)

(7)

1

LocalRegionsSpatialDomainsStdRegions

MultiRegions ξ1 (1)

ξ2 (2)

x1 (3)
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uδ(x1, x2) =
P1∑

p=0

P2∑

q=0

ûpqφpq(x1, x2) (5)

(6)

1

A
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M[i][j]=
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Ω
ΦiΦjdx =

nel∑

e

∑

p

∑

q

∫

Ωe

φp(x)φq(x)dx

=
nel∑

e

∑

p

∑

q

∫ 1

−1
φp(χe(ξ))φq(χe(ξ))jedξ
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as the operation A scatters the global degrees of freedom to the local elements. A
T , however,

assembles the global contribution by summing together various terms of the local degrees of
freedom.

A and A
T represent key operations required in the construction of a Galerkin spectral/hp

element method since they permit us to define a series of local operators which can then be
assembled using these operators. It can be appreciated that only global modes which are
split into elemental contributions will have multiple entries in the columns of the A matrix.
When using a higher order p-type expansion, as discussed in section 1.3.2.1, the extra inte-
rior modes are all global degrees of freedom and will not need to be assembled in this fashion.

In practice we never construct the assembly matrix A as it is very sparse and thereforeImplementation.
note: Construction of

a mapping array for
global to local scatter

and local to global
assembly.

numerically very inefficient to use it as a matrix operator. An equivalent numerical operation
is to use a mapping array for each element which contains the global location of every local
degree of freedom. If we denote this array by “map[e][i]” where e denotes the element and
i is the local mode index, then for the example in figure 1.3 the array would be defined as:

map[1][i] =

{
0
1

}
map[2][i] =

{
1
2

}
map[3][i] =

{
2
3

}
.

The scatter operation denoted by A [see equation (1.33a)] can then be evaluated as

Do e = 1, Nel

Do i = 0, Ne
m − 1

ûe[i] = ûg[map[e][i]]
continue

continue






⇔ ûl = Aûg,

where Ne
m = P e + 1. Alternatively, the global assembly operation may be written as

Do e = 1, Nel

Do i = 0, Ne
m − 1

ûg[map[e][i]] = ûg[map[e][i]] + ûe[i]
continue

continue






⇔ ûg = A
T ûl

1.3.2 Polynomial Expansions: The p-Type Extension

In multiple dimensions, complex domains make it difficult to identify global expansions
analytically. The introduction of complex geometries can also generate different scales in
the solution, which may have a very localised structure. Such considerations require the
use of elemental decomposition as discussed in section 1.3.1. Therefore, if we decompose
the solution domain into elemental regions which broadly capture either the geometry or
the local scale of the problem the application of the p-type extension can prove to be a
numerically efficient approach to achieving a very accurate solution. In all that follows we
will interpret the p-type extension as increasing the order of the polynomial expansion within
an elemental region.

Before discussing the different types of p-type extension, we first define the hp element
space in one-dimension. Recalling the definition of the standard element, Ωst, and the
coordinate mapping χe(ξ) from Ωst to an elemental region Ωe we start by denoting the
space of all polynomials of degree P defined on the standard element Ωst by PP (Ωst). The
discrete hp expansion space X δ is the set of all functions uδ(x) which exist in H1 and that
are polynomials in ξ within every element [e.g., uδ(χe(ξ)) ∈ PP (Ωst)], which is formally
written as

X δ = {uδ | uδ ∈ H1, uδ(χe(ξ)) ∈ PP e(Ωst), e = 1, . . . , Nel}. (1.34)
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Figure 1.11 Schematic illustration of the global matrix assembly MG from the elemental matrices
M e. Different choices of the assembly matrix A lead to different filling of the final global matrix.
The top assembly matrix leads to a global matrix with minimal bandwidth for this one-dimensional
system whereas the bottom assembly matrix separates the interior and elemental matrices which
could then be inverted using static condensation.
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Figure 1.12 Convergence in the discrete energy norm ||ε||E as a function of degrees of freedom
Ndof . Two tests were performed using the h-type extension with a fixed polynomial order p = 1
and the p-type extension with two elemental domains. (a) Error on a log-log axis demonstrating
the algebraic convergence of the h-type extension. (b) Error on a semi-log axis demonstrating the
exponential convergence of the p-type extension for smooth solutions.
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The relationship between the local and global expansion coefficients is therefore

û1
0 = û0

û1
1 = û2

0 = û1

û2
1 = û3

0 = û2

û3
1 = û3.

In this example, it can be seen that the local representation of the function has 6 elemental
degrees of freedom [(Neof = Nel · (P + 1) = 6)] but only 4 global degrees of freedom
(Ndof = 4). The two constraints shown in (1.32) ensure that uδ(x) is C0 continuous, which
is a sufficient condition to ensure that the expansion is in H1 space and thereby can be an
admissible function for the trial space X δ for a second-order elliptic problem.

To construct a more general description of the local to global mapping we let ûg denote
a vector of all global coefficients,

ûg = [û0, . . . , ûNdof−1]
T ,

and if ûe is a vector of the local coefficients (that is, ûe = [ûe
0, û

e
1]) in element e, then the

vector of all local coefficients, denoted by ûl can be written as

ûl =





û1

û2

· · ·
ûNel



 .
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as the operation A scatters the global degrees of freedom to the local elements. A
T , however,

assembles the global contribution by summing together various terms of the local degrees of
freedom.

A and A
T represent key operations required in the construction of a Galerkin spectral/hp

element method since they permit us to define a series of local operators which can then be
assembled using these operators. It can be appreciated that only global modes which are
split into elemental contributions will have multiple entries in the columns of the A matrix.
When using a higher order p-type expansion, as discussed in section 1.3.2.1, the extra inte-
rior modes are all global degrees of freedom and will not need to be assembled in this fashion.

In practice we never construct the assembly matrix A as it is very sparse and thereforeImplementation.
note: Construction of

a mapping array for
global to local scatter

and local to global
assembly.

numerically very inefficient to use it as a matrix operator. An equivalent numerical operation
is to use a mapping array for each element which contains the global location of every local
degree of freedom. If we denote this array by “map[e][i]” where e denotes the element and
i is the local mode index, then for the example in figure 1.3 the array would be defined as:

map[1][i] =

{
0
1

}
map[2][i] =

{
1
2

}
map[3][i] =

{
2
3

}
.

The scatter operation denoted by A [see equation (1.33a)] can then be evaluated as

Do e = 1, Nel

Do i = 0, Ne
m − 1

ûe[i] = ûg[map[e][i]]
continue

continue






⇔ ûl = Aûg,

where Ne
m = P e + 1. Alternatively, the global assembly operation may be written as

Do e = 1, Nel

Do i = 0, Ne
m − 1

ûg[map[e][i]] = ûg[map[e][i]] + ûe[i]
continue

continue






⇔ ûg = A
T ûl

1.3.2 Polynomial Expansions: The p-Type Extension

In multiple dimensions, complex domains make it difficult to identify global expansions
analytically. The introduction of complex geometries can also generate different scales in
the solution, which may have a very localised structure. Such considerations require the
use of elemental decomposition as discussed in section 1.3.1. Therefore, if we decompose
the solution domain into elemental regions which broadly capture either the geometry or
the local scale of the problem the application of the p-type extension can prove to be a
numerically efficient approach to achieving a very accurate solution. In all that follows we
will interpret the p-type extension as increasing the order of the polynomial expansion within
an elemental region.

Before discussing the different types of p-type extension, we first define the hp element
space in one-dimension. Recalling the definition of the standard element, Ωst, and the
coordinate mapping χe(ξ) from Ωst to an elemental region Ωe we start by denoting the
space of all polynomials of degree P defined on the standard element Ωst by PP (Ωst). The
discrete hp expansion space X δ is the set of all functions uδ(x) which exist in H1 and that
are polynomials in ξ within every element [e.g., uδ(χe(ξ)) ∈ PP (Ωst)], which is formally
written as

X δ = {uδ | uδ ∈ H1, uδ(χe(ξ)) ∈ PP e(Ωst), e = 1, . . . , Nel}. (1.34)
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∫

Ω
v∇2u dx =

∮
v
∂u

∂n
ds−

∫

Ω
∇v∇u dxDivergence 

theorem:

2/3D Helmholtz problem
∇2u− λu = −f

∫

Ω
v∇2u dx−

∫

Ω
λu dx = −

∫

Ω
vf dxIntegral

 formulation:

Weak form: 
∫

Ω
∇v∇u + λu dx =

∫

Ω
vf dx +

∮

∂Ω
v
∂u

∂n
ds

∮

∂Ω
vgN dsNeumann BC:Dirichlet BC: u = uD + uH
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Figure 3.10 Illustration of local and global numbering schemes for a region containing two trian-
gular elements. The numbering corresponds to a triangular modal expansion where P1 = P2 = 2,
which only includes boundary modes. The orientation of the local coordinate system for each
triangle is indicated by the arrow system.

matrix denotes a block diagonal extension of the matrix. To complement ûl we define ûg to
denote the global degrees of freedom which is a vector of dimension Ndof . The many-to-one
mapping from global to local degrees of freedom can be represented by the matrix operation
A, that is,

ûl = Aûg. (3.79)

The matrix A is a very sparse rectangular matrix of dimension Neof × Ndof whose
values may typically be either 1 or −1 depending on the shape of connecting modes. For
a nodal expansion all entries are positive. Typically only one entry will appear on any
given row of the matrix. However, for different types of continuity conditions, such as the
constrained approximation where two geometrically non-conforming elements meet multiple
entries may appear on rows and columns of the assembly matrix. To illustrate the form of
the assembly matrix A we consider the case shown in figure 3.10 where we have a domain
containing two triangular elements. In this example we are considering an expansion order of
P1 = P2 = 2 which only contains boundary modes. Therefore, the number of modes in each
element is Nm = (P1 + 1)(P2 + 2)/2 = 6 and the total number of local degrees of freedom
is Neof = 2Nm = 12. In the left-hand plot of figure 3.10 we see the local numbering of the
Nm = 6 elemental modes. This is dependent upon the orientation of the local coordinate
system within the triangle as indicated by the arrow system. We have numbered the local
degrees of freedom according to the convention where vertices are labelled first followed by
edges, then faces (in three-dimensions), and finally the interior modes.

To enforce C0 continuity between the two triangles we must match the boundary modes
(1, 4, 2) in triangle 1 with the boundary modes (1, 4, 2) in triangle 2. This is achieved by
assigning a global numbering scheme of Ndof = 9 global degrees of freedom as shown in the
right-hand plot. Similarly to the local numbering scheme, the global numbering convention
applied is numbering all global vertices first followed by all global edges, faces (in three-
dimensions) and finally the interior modes where interior elemental blocks are numbered
consecutively. This type of global numbering scheme, particularly when interior modes are
number consecutively, is also convenient for the static condensation technique described in
section 3.2.3.

The assembly matrix A which relates the local degrees of freedom ûl to the global degrees
of freedom ûg is shown in figure 3.11. In this figure we see that every row of the matrix
A contains only one entry signifying the fact that each local degree of freedom is related
to one global degree of freedom. Every column of the matrix A contains at least one entry
although for geometrically non-conforming elements or mortar constructions there may be
more than one entry. In the case where every row contains only one entry the summation
of the absolute value of the columns tells us how many local modes contribute to construct
a global degree of freedom, which is known as the multiplicity of the mode.

We are now in a position to define the assembly process from local to global degrees
of freedom. The action of the assembly process can be mathematically expressed as the
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ûl =





û1[0]
û1[1]
û1[2]
û1[3]
û1[4]
û1[5]
· · ·

û2[0]
û2[1]
û2[2]
û2[3]
û2[4]
û2[5]





=


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1
1

1
1
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1

1
1

1
1

1
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


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.

Figure 3.11 Relation between the local ûl and global ûg degrees of freedom using the assembly
matrix A.

transpose of A but is heuristically captured by the integral operation similar to the case
shown in figure 3.9. If we consider the inner product function u(x1, x2) with respect to the
global basis Φn(x1, x2),

Îg[n] =

∫

Ω
u(x1, x2)Φn(x1, x2), 0 ≤ n < Ndof

this series of integrals can be expressed as elemental contributions, such that

Îg[n] =

∫

Ω
u(x1, x2)Φn(x1, x2) =

∫

Ωe

u(x1, x2)φm(x1, x2)dx1dx2 (3.80)

where n(m, e) represents a unique global indexing of each elemental modal contribution m
over each element e. This will be defined in term of a mapping array map[e][i] shortly. The
evaluation of the integrals (3.80) over all global modes 0 ≤ n ≤ Ndof can be represented in
matrix form as

Îg = A
T Î l = A

T Î
e
.

In the above equation Î l is analogous to the definition (3.78) where

Î
e
[m] =

∫

Ωe

u(x1, x2)φm(x1, x2)dx1dx2,

and m denotes the summation over all elemental modes which may involve a tensor product
basis φm(p, q) = φpq (see section 3.1.5.1).

We note that the matrix operations A and A
T are not the inverse of each other, and

therefore
ûg "= A

T
Aûg.

The operation of A is, a scatter from a global to local system whereas the operation of A
T

is a global assembly or summation procedure. The inverse of the A matrix would normally
be considered as a standard “gather” type procedure. The operations of A and A

T are the
key constructs to form a global system when using the Galerkin technique.

As an aside, we note that all the boundary modes touching the solution domain boundary
have been treated as global degrees of freedom. As we shall see in section 3.3.1, boundaries
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with Neumann conditions are typically treated in this fashion. However, boundaries asso-
ciated with Dirichlet conditions are not part of the Galerkin test space and therefore some
reordering is required to remove them from the global degrees of freedom.

In a numerical implementation it is not practical, or even desirable, to construct A

explicitly due to the size and sparsity of the matrix. The operation may be numerically
implemented by setting up a mapping array which we will denote as n(e, i) = map[e][i].
This array is of dimension [Nel ×maxe(Nm

e)] where Nm
e is the number of expansion modes

in an elemental expansion. Typically, Nm
e will be fixed over all elements although, in

general, the value may change between elements. The array map[e][i] contains the global
value of the i-th expansion coefficient within the e-th element. The example shown in figure
3.10 would therefore have an array map[e][i] of the form:

map[1][i] =






0
1
2
4
5
6

map[2][i] =






3
2
1
8
5
7

.

The total number of entries of the map[e][i] is the same as the number of non-zero entries
in A. The scatter operation A from ûg to ûl can now be evaluated by:

Do e = 1, Nel

Do i = 0, Nm
e − 1

ûe[i] = sign[e][i] · ûg[map[e][i]]
continue

continue






⇔ ûl = Aûg (3.81) where sign[e][i]Implementation.
note: Numerical
implementation of the
global to local gather
operation denoted by
A.is an array of similar dimensions to map[e][i] containing 1 or −1 entries depending on the

modal connectivity between two elements as discussed in 3.2.1.1. For a nodal expansion
sign[e][i] would only contain positive entries and so they may be removed from the loop.
The global assembly operation can be evaluated as:

Do e = 1, Nel

Do i = 0, Nm
e − 1

Îg[map[e][i]] = Îg[map[e][i]]

+sign[e][i] · Î
e
[i]

continue
continue






⇔ Îg = A
T Î l. (3.82) Implementation.

note: Numerical
implementation of the
local to global assembly
operation denoted by
AT .

If the inner summation did not contain the v̂g[map[e][i]] term on the right-hand side it
would be the standard “gather” operation.

3.2.1.1 Local to Global Boundary Mapping: Global Boundary Assembly

We have seen that the global assembly procedure primarily involves boundary mode connec-
tivity as the interior modes may be independently numbered as global degrees of freedom.
We shall also see in section 3.2.3 that the assembly procedure need only involve the bound-
ary modes as the interior modes may be removed from the full matrix problem using static
condensation. In this case we only require a boundary mapping bmap[e][i] rather than the
full numbering system map[e][i].

We assume that the local degrees of freedom are ordered so that the boundary modes
are listed first. If there are nb[e] boundary modes in the e-th element the local to global
assembly process is numerically evaluated as
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implemented by setting up a mapping array which we will denote as n(e, i) = map[e][i].
This array is of dimension [Nel ×maxe(Nm

e)] where Nm
e is the number of expansion modes

in an elemental expansion. Typically, Nm
e will be fixed over all elements although, in

general, the value may change between elements. The array map[e][i] contains the global
value of the i-th expansion coefficient within the e-th element. The example shown in figure
3.10 would therefore have an array map[e][i] of the form:

map[1][i] =






0
1
2
4
5
6

map[2][i] =






3
2
1
8
5
7

.

The total number of entries of the map[e][i] is the same as the number of non-zero entries
in A. The scatter operation A from ûg to ûl can now be evaluated by:

Do e = 1, Nel

Do i = 0, Nm
e − 1

ûe[i] = sign[e][i] · ûg[map[e][i]]
continue

continue






⇔ ûl = Aûg (3.81) where sign[e][i]Implementation.
note: Numerical
implementation of the
global to local gather
operation denoted by
A.is an array of similar dimensions to map[e][i] containing 1 or −1 entries depending on the

modal connectivity between two elements as discussed in 3.2.1.1. For a nodal expansion
sign[e][i] would only contain positive entries and so they may be removed from the loop.
The global assembly operation can be evaluated as:

Do e = 1, Nel

Do i = 0, Nm
e − 1

Îg[map[e][i]] = Îg[map[e][i]]

+sign[e][i] · Î
e
[i]

continue
continue






⇔ Îg = A
T Î l. (3.82) Implementation.

note: Numerical
implementation of the
local to global assembly
operation denoted by
AT .

If the inner summation did not contain the v̂g[map[e][i]] term on the right-hand side it
would be the standard “gather” operation.

3.2.1.1 Local to Global Boundary Mapping: Global Boundary Assembly

We have seen that the global assembly procedure primarily involves boundary mode connec-
tivity as the interior modes may be independently numbered as global degrees of freedom.
We shall also see in section 3.2.3 that the assembly procedure need only involve the bound-
ary modes as the interior modes may be removed from the full matrix problem using static
condensation. In this case we only require a boundary mapping bmap[e][i] rather than the
full numbering system map[e][i].

We assume that the local degrees of freedom are ordered so that the boundary modes
are listed first. If there are nb[e] boundary modes in the e-th element the local to global
assembly process is numerically evaluated as
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Figure 23: Illustration of the construction of a C0 global expansion from two local modal

expansions of order P = 4. To ensure C0 continuity the boundary modes of
similar shape need to be matched. Depending on the orientation of the local
coordinate systems the modes of odd order may also need to be negated.

mode of cubic order needs to have its sign reversed in one element as the local coordinate
system has an opposite direction along the intersecting edge.

Nodal Edge Connectivity

When using a nodal expansion the modes may be identified with a physical location of
the nodal points where the modes have a unit value. In the nodal expansion, we are not
concerned with matching edge modes of similar order (as in the hierarchical expansion
case) but with matching modes with the same nodal location as illustrated in figure 25.
The physical interpretation of an expansion mode being associated with a nodal position
makes it easier to generate a numbering system, by numbering the location of the nodal
points along an edge as shown in figure 26.

In figure 26 we have chosen to locally number the elemental degrees of freedom using
an anti-clockwise convention where the vertex modes are listed first. Using an anti-
clockwise convention ensures that one side of the elemental matching is always reversed
with respect to the global numbering. For example, the modes in element 1 have locally
increasing numbers (13, 14, 15) corresponding to globally increasing numbers (15, 16, 17)
whereas the modes in element 2 have locally increasing numbers (10, 11, 12) correspond-
ing to globally decreasing numbers (17, 16, 15). If we had ordered the local edge modes
according to the direction of the local coordinate system, we would have had to deter-
mine if the reversal of the ordering would be necessary, depending of the direction of the
local edge coordinate. For the nodal expansion in two-dimensions, the use of an anti-
clockwise local numbering scheme implies that the ordering is always reversed between
two elements and therefore no extra test is required.

4-11

Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D

0
1

2 3

2 1

3

Element 1 Element 2

Local Numbering Global Numbering

0

7 8 9 15 14 13

10
11

12

4

5

6

6 5 410 11 12

7

8

9

13
14

15

01

2 3

0 5

3

Element 1 Element 2

4

9 10 11 17 16 15

6

7

8

20 19 1815 16 17

24
25

26

12
13

14

21

22

23

Figure 24: Numbering system for a hierarchical quadrilateral expansion of order P = 4 where
the arrows indicate the local coordinate system. The number nearest the edge cor-
responds to the edge mode of the lowest polynomial order. Following a similar
ordering for the global numbering means that modes of similar order are automat-
ically matched.
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Figure 25: Illustration of the construction of a C0 global expansion from two local nodal

expansions of order P1 = P2 = 4. To ensure C0 continuity the boundary modes
with similar nodal locations need to be matched.
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Figure 24: Numbering system for a hierarchical quadrilateral expansion of order P = 4 where
the arrows indicate the local coordinate system. The number nearest the edge cor-
responds to the edge mode of the lowest polynomial order. Following a similar
ordering for the global numbering means that modes of similar order are automat-
ically matched.
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Figure 25: Illustration of the construction of a C0 global expansion from two local nodal

expansions of order P1 = P2 = 4. To ensure C0 continuity the boundary modes
with similar nodal locations need to be matched.
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Figure 26: Numbering system for a nodal quadrilateral expansion of polynomial order P1 =
P2 = 4. The arrows indicate the orientation of the local coordinate system (ξ1, ξ2).
In a nodal expansion the edge mode can be physically identified with the nodal
points of the Lagrange polynomial. Numbering each nodal location therefore pro-
vides a global numbering scheme which will ensure C0 continuity.
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objecs of these classes contain:

SegExp QuadExp

TriExp

HexExp

PrismExp

PyrExp

TetExp

ExpList3D

ExpList

ExpList1D

this library contains:

• linear algebra routines
• block-matrix routines
• data managers and memory pools
• polynomial manipulation routines

several utilities supporting the other libraries
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the geometry of an element
• data: ◦ a standard expansion (a parametrix mapping from a standard

objects of these classes contain:

Geometry

HexGeom

TetGeom

M
u
lt

iR
e
g
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• data: ◦ a list of local elemental expansions
• da for the classes ContExpList iD, ContField iD, DisContField iD:

• data: ◦ the global coefficients ûg

• data: ◦ a mapping array from the local to the global degrees of freedom

objects of these classes contain:

• da for the classes ContField iD, DisContField iD:
• data: ◦ information about the boundary conditions

• data: ◦ the basis φp(ξi)

expansion on local element u(xi) =
∑

p φp(xi)ûp

• data: ◦ the coefficients ûp

• data: ◦ the geometry of the element

• data: ◦ the basis φp(xi)

• data: ◦ the physical values u(xi)

expansion on a global region u(xi) =
∑

e

∑
p φe

p(xi)ûe
p

• data: ◦ to the local element, which entirely describes the geometry)
• data: ◦ the geometric factors of the transformation (Jacobian, ...)

objects of these

• data: ◦ the physical values u(ξi)
• data: ◦ the coefficients ûp

classes contain:
expansion on standard element u(ξi) =

∑
p φp(ξi)ûp
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DisContField2D DisContField3DDisContField1D

ContField1D ContField2D ContField3D

ContExpList3DContExpList2DContExpList1D

ExpList2D

StdExpansion3D

StdHexExp

StdPyrExp

StdQuadExp

EdgeComp

SegGeom QuadGeom

TriGeom

PrismGeom

PyrGeom

VertexComp

TriFaceComp

Geometry3DGeometry2DGeometry1D

StdExpansion

StdPrismExp

StdTetExp

QuadFaceComp

StdExpansion2DStdExpansion1D

Nektar++ code


