publisher={American Institute of Aeronautics and Astronautics},

}

@article{WiFaVi14,

title={{PyFR}: An open source framework for solving advection–diffusion type problems on streaming architectures using the flux reconstruction approach},

author={Witherden, FR and Farrington, AM and Vincent, PE},

journal={Computer Physics Communications},

year={2014},

volume={185},

issue={11},

pages={3028–3040},

doi={10.1016/j.cpc.2014.07.011}

}

%%% Software

@article{VosSK2010,

...

...

@@ -127,3 +296,83 @@ publisher = "Springer Lecture Notes in Computational Science and Engineering, Vo

year="2012"

}

@article{AinsworthAD11,

author="Mark Ainsworth and Gaelle Andriamaro and Oleg Davydov",

title="Bernstein-B{\'e}zier Finite Elements of Arbitrary Order and Optimal Assembly Procedures",

journal="SIAM Journal of Scientific Computing",

volume="33",

issue="6",

pages="3087-3109",

year="2011"

}

@article{Ainsworth14,

author="Mark Ainsworth",

title="Pyramid Algorithms for Bernstein-B{\'e}zier Finite Elements of High, Nonuniform Order in Any Dimension",

journal="SIAM Journal of Scientific Computing",

volume="36",

issue="2",

pages="A543-A569",

year="2014"

}

@article{WarburtonPH00,

author="T. Warburton and L.F. Pavarino and J.S. Hesthaven",

title="A Pseudo-spectral scheme for the incompressible {N}avier-{S}tokes equations using unstructured nodal elements",

journal="J. Comp. Phys.",

volume="164",

pages="1-21",

year="2000"

}

@article{Dubiner91,

author="M. Dubiner",

title="Spectral Methods on Triangles and Other Domains",

journal="J. Sci. Comp.",

volume="6",

pages="345",

year="1991"

}

@Article{Hesthaven98,

author={Hesthaven, J.S. },

title={From electrostatics to almost optimal nodal sets for

polynomial interpolation in a simplex},

journal={SIAM J. Numer. Anal.},

year={1998},

volume={35},

number={2},

pages={655-676},

}

@Article{TaylorWV00,

author={Taylor, M. and Wingate, B.A. and Vincent, R.E.},

title={An Algorithm for computing {F}ekete points in the triangle},

journal={SIAM J. Num. Anal.},

year={2000},

volume={38},

pages={1707-1720},

}

@article{Duffy82,

author="Duffy, M.G.",

title="Quadrature over a pyramid or cube of integrands

with a singularity at a vertex",

journal="SIAM J. Numer. Anal.",

volume="19",

pages="1260",

year="1982"

}

@article{CantwellYKPS14,

author="C.D. Cantwell and S. Yakovlev and R.M. Kirby and N.S. Peters and S.J. Sherwin",

title="High-order continuous spectral/hp element discretisation for reaction-diffusion problems on a surface",

\noindent{\textbf{LibUtilities:}} This part of the library contains all the basic mathematical and computer science building blocks of the Nektar++ code.

\noindent{\textbf{StdRegions:}} This part of the library contains the objects that express ``standard region'' data and operations. In one dimension, this is the StdSegment. In two

dimensions, this is the StdTri (Triangle) and StdQuad (Quadrilateral). In three dimensions, this is the StdTet (Tetrahedra), StdHex (Hexahedra), StdPrism (Prism) and StdPyr (Pyramid). These represent

the seven different standarized regions over which we support differentiation and integration.

\noindent{\textbf{SpatialDomains:}}

\noindent{\textbf{LocalRegions:}}

\begin{figure}[htb]

\centering

\includegraphics[width=4in]{img/structure1.png}

...

...

@@ -9,6 +178,16 @@

\label{intro:fig1}

\end{figure}

\begin{figure}[htb]

\centering

\includegraphics[width=4in]{img/stdtolocal.pdf}

\caption{Figure stdtolocal}

\label{intro:stdtolocal}

\end{figure}

\begin{figure}[htb]

\centering

\includegraphics[width=4in]{img/structure2.png}

...

...

@@ -17,7 +196,27 @@

\end{figure}

\section{Software Implementations and Frameworks}

\section{Assumed Proficiencies}

The developer guide is designed for the experienced \shp{}

spectral element \cite{DevilleFM02,KaSh05}

discontinuous Galerkin \cite{HesthavenW08}

CanutoHQZ87

Hughes87

SzBa91

TrefethenB97

Demmel97

\section{Other Software Implementations and Frameworks}

In the last ten years a collection of software frameworks has been put forward to try to bridge the gap between the

mathematics of high-order methods and their implementation. A major challenge many practitioners have with

...

...

@@ -46,3 +245,7 @@ and discontinuous Galerkin

strategies for solving a particular problem of interest, but in a way on which others could adopt and build. The discontinuous Galerkin

of Hesthaven and Warburton \cite{HesthavenW08} and a software framework for the discontinuous Petrov-Galerkin method \cite{roberts_camellia:_2014}

provide a similar flexibility to the user-community trying to jump-start their high-order software experience.