HexGeom.cpp 31.5 KB
Newer Older
Mike Kirby's avatar
Mike Kirby committed
1
2
////////////////////////////////////////////////////////////////////////////////
//
3
//  File: HexGeom.cpp
Mike Kirby's avatar
Mike Kirby committed
4
5
6
7
8
9
//
//  For more information, please see: http://www.nektar.info/
//
//  The MIT License
//
//  Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10
//  Department of Aeronautics, Imperial College London (UK), and Scientific
Mike Kirby's avatar
Mike Kirby committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
//  Computing and Imaging Institute, University of Utah (USA).
//
//  License for the specific language governing rights and limitations under
//  Permission is hereby granted, free of charge, to any person obtaining a
//  copy of this software and associated documentation files (the "Software"),
//  to deal in the Software without restriction, including without limitation
//  the rights to use, copy, modify, merge, publish, distribute, sublicense,
//  and/or sell copies of the Software, and to permit persons to whom the
//  Software is furnished to do so, subject to the following conditions:
//
//  The above copyright notice and this permission notice shall be included
//  in all copies or substantial portions of the Software.
//
//  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
//  OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
//  THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
//  FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
//  DEALINGS IN THE SOFTWARE.
//
32
//  Description: Hexahedral geometry definition.
Mike Kirby's avatar
Mike Kirby committed
33
34
35
36
//
////////////////////////////////////////////////////////////////////////////////

#include <SpatialDomains/HexGeom.h>
37
38
39
#include <SpatialDomains/Geometry1D.h>
#include <StdRegions/StdHexExp.h>
#include <SpatialDomains/SegGeom.h>
40
#include <SpatialDomains/QuadGeom.h>
41
#include <SpatialDomains/GeomFactors.h>
Mike Kirby's avatar
Mike Kirby committed
42

43
44
using namespace std;

Mike Kirby's avatar
Mike Kirby committed
45
46
namespace Nektar
{
47
48
namespace SpatialDomains
{
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
const unsigned int HexGeom::VertexEdgeConnectivity[8][3] = {
    {0, 3, 4}, {0, 1, 5}, {1, 2, 6}, {2, 3, 7},
    {4, 8, 11}, {5, 8, 9}, {6, 9, 10}, {7, 10, 11}};
const unsigned int HexGeom::VertexFaceConnectivity[8][3] = {
    {0, 1, 4}, {0, 1, 2}, {0, 2, 3}, {0, 3, 4},
    {1, 4, 5}, {1, 2, 5}, {2, 3, 5}, {3, 4, 5}};
const unsigned int HexGeom::EdgeFaceConnectivity[12][2] = {
    {0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 4}, {1, 2},
    {2, 3}, {3, 4}, {1, 5}, {2, 5}, {3, 5}, {4, 5}};

HexGeom::HexGeom()
{
    m_shapeType = LibUtilities::eHexahedron;
}
64

65
66
67
68
69
HexGeom::HexGeom(int id, const QuadGeomSharedPtr faces[])
    : Geometry3D(faces[0]->GetEdge(0)->GetVertex(0)->GetCoordim())
{
    m_shapeType = LibUtilities::eHexahedron;
    m_globalID = id;
70

71
72
    /// Copy the face shared pointers
    m_faces.insert(m_faces.begin(), faces, faces + HexGeom::kNfaces);
Peter Vos's avatar
Peter Vos committed
73

74
75
76
    /// Set up orientation vectors with correct amount of elements.
    m_eorient.resize(kNedges);
    m_forient.resize(kNfaces);
77

78
79
80
81
82
    SetUpLocalEdges();
    SetUpLocalVertices();
    SetUpEdgeOrientation();
    SetUpFaceOrientation();
}
83

84
85
86
HexGeom::~HexGeom()
{
}
87

88
89
90
91
92
93
94
95
96
97
98
void HexGeom::v_GenGeomFactors()
{
    if(!m_setupState)
    {
        HexGeom::v_Setup();
    }

    if (m_geomFactorsState != ePtsFilled)
    {
        int i, f;
        GeomType Gtype = eRegular;
Sophia Han's avatar
Sophia Han committed
99

100
101
102
103
        v_FillGeom();

        // check to see if expansions are linear
        for (i = 0; i < m_coordim; ++i)
104
        {
105
106
107
            if (m_xmap->GetBasisNumModes(0) != 2 ||
                m_xmap->GetBasisNumModes(1) != 2 ||
                m_xmap->GetBasisNumModes(2) != 2)
108
            {
109
110
111
                Gtype = eDeformed;
            }
        }
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        // check to see if all faces are parallelograms
        if (Gtype == eRegular)
        {
            const unsigned int faceVerts[kNfaces][QuadGeom::kNverts] = {
                {0, 1, 2, 3},
                {0, 1, 5, 4},
                {1, 2, 6, 5},
                {3, 2, 6, 7},
                {0, 3, 7, 4},
                {4, 5, 6, 7}};

            for (f = 0; f < kNfaces; f++)
            {
                // Ensure each face is a parallelogram? Check this.
                for (i = 0; i < m_coordim; i++)
                {
                    if (fabs((*m_verts[faceVerts[f][0]])(i) -
                             (*m_verts[faceVerts[f][1]])(i) +
                             (*m_verts[faceVerts[f][2]])(i) -
                             (*m_verts[faceVerts[f][3]])(i)) >
                        NekConstants::kNekZeroTol)
134
135
                    {
                        Gtype = eDeformed;
136
                        break;
137
                    }
138
                }
139

140
                if (Gtype == eDeformed)
141
                {
142
                    break;
143
                }
144
            }
145
146
        }

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        m_geomFactors = MemoryManager<GeomFactors>::AllocateSharedPtr(
            Gtype, m_coordim, m_xmap, m_coeffs);
        m_geomFactorsState = ePtsFilled;
    }
}

NekDouble HexGeom::v_GetLocCoords(const Array<OneD, const NekDouble> &coords,
                                  Array<OneD, NekDouble> &Lcoords)
{
    NekDouble ptdist = 1e6;
    int i;

    v_FillGeom();

    // calculate local coordinate for coord
    if (GetMetricInfo()->GetGtype() == eRegular)
    {
        NekDouble len0 = 0.0;
        NekDouble len1 = 0.0;
        NekDouble len2 = 0.0;
        NekDouble xi0 = 0.0;
        NekDouble xi1 = 0.0;
        NekDouble xi2 = 0.0;
        Array<OneD, NekDouble> pts(m_xmap->GetTotPoints());
        int nq0, nq1, nq2;

        // get points;
        // find end points
        for (i = 0; i < m_coordim; ++i)
176
        {
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
            nq0 = m_xmap->GetNumPoints(0);
            nq1 = m_xmap->GetNumPoints(1);
            nq2 = m_xmap->GetNumPoints(2);

            m_xmap->BwdTrans(m_coeffs[i], pts);

            // use projection to side 1 to determine xi_1 coordinate based on
            // length
            len0 += (pts[nq0 - 1] - pts[0]) * (pts[nq0 - 1] - pts[0]);
            xi0 += (coords[i] - pts[0]) * (pts[nq0 - 1] - pts[0]);

            // use projection to side 4 to determine xi_2 coordinate based on
            // length
            len1 += (pts[nq0 * (nq1 - 1)] - pts[0]) *
                    (pts[nq0 * (nq1 - 1)] - pts[0]);
            xi1 += (coords[i] - pts[0]) * (pts[nq0 * (nq1 - 1)] - pts[0]);

            // use projection to side 4 to determine xi_3 coordinate based on
            // length
            len2 += (pts[nq0 * nq1 * (nq2 - 1)] - pts[0]) *
                    (pts[nq0 * nq1 * (nq2 - 1)] - pts[0]);
            xi2 += (coords[i] - pts[0]) * (pts[nq0 * nq1 * (nq2 - 1)] - pts[0]);
        }
200

201
202
203
        Lcoords[0] = 2 * xi0 / len0 - 1.0;
        Lcoords[1] = 2 * xi1 / len1 - 1.0;
        Lcoords[2] = 2 * xi2 / len2 - 1.0;
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        // Set ptdist to distance to nearest vertex
        // Point inside tetrahedron
        PointGeom r(m_coordim, 0, coords[0], coords[1], coords[2]);
        for (int i = 0; i < 8; ++i)
        {
            ptdist = min(ptdist, r.dist(*m_verts[i]));
        }
    }
    else
    {
        // Determine nearest point of coords  to values in m_xmap
        int npts = m_xmap->GetTotPoints();
        Array<OneD, NekDouble> ptsx(npts), ptsy(npts), ptsz(npts);
        Array<OneD, NekDouble> tmp1(npts), tmp2(npts);

        m_xmap->BwdTrans(m_coeffs[0], ptsx);
        m_xmap->BwdTrans(m_coeffs[1], ptsy);
        m_xmap->BwdTrans(m_coeffs[2], ptsz);

        const Array<OneD, const NekDouble> za = m_xmap->GetPoints(0);
        const Array<OneD, const NekDouble> zb = m_xmap->GetPoints(1);
        const Array<OneD, const NekDouble> zc = m_xmap->GetPoints(2);

        // guess the first local coords based on nearest point
        Vmath::Sadd(npts, -coords[0], ptsx, 1, tmp1, 1);
        Vmath::Vmul(npts, tmp1, 1, tmp1, 1, tmp1, 1);
        Vmath::Sadd(npts, -coords[1], ptsy, 1, tmp2, 1);
        Vmath::Vvtvp(npts, tmp2, 1, tmp2, 1, tmp1, 1, tmp1, 1);
        Vmath::Sadd(npts, -coords[2], ptsz, 1, tmp2, 1);
        Vmath::Vvtvp(npts, tmp2, 1, tmp2, 1, tmp1, 1, tmp1, 1);

        int min_i = Vmath::Imin(npts, tmp1, 1);

        // distance from coordinate to nearest point for return value.
        ptdist = sqrt(tmp1[min_i]);

        // Get Local coordinates
        int qa = za.num_elements(), qb = zb.num_elements();
        Lcoords[2] = zc[min_i / (qa * qb)];
        min_i = min_i % (qa * qb);
        Lcoords[1] = zb[min_i / qa];
        Lcoords[0] = za[min_i % qa];

        // Perform newton iteration to find local coordinates
        NekDouble resid = 0.0;
        NewtonIterationForLocCoord(coords, ptsx, ptsy, ptsz, Lcoords, resid);
    }
    return ptdist;
}

bool HexGeom::v_ContainsPoint(const Array<OneD, const NekDouble> &gloCoord,
                              Array<OneD, NekDouble> &locCoord,
                              NekDouble tol,
                              NekDouble &resid)
{
    ASSERTL1(gloCoord.num_elements() == 3,
             "Three dimensional geometry expects three coordinates.");
262

263
264
265
266
267
268
269
270
    // find min, max point and check if within twice this distance other false
    // this is advisable since GetLocCoord is expensive for non regular
    // elements.
    if (GetMetricInfo()->GetGtype() != eRegular)
    {
        int i;
        Array<OneD, NekDouble> mincoord(3), maxcoord(3);
        NekDouble diff = 0.0;
271

272
        v_FillGeom();
273

274
275
        const int npts = m_xmap->GetTotPoints();
        Array<OneD, NekDouble> pts(npts);
276

277
278
279
        for (i = 0; i < 3; ++i)
        {
            m_xmap->BwdTrans(m_coeffs[i], pts);
280

281
282
            mincoord[i] = Vmath::Vmin(pts.num_elements(), pts, 1);
            maxcoord[i] = Vmath::Vmax(pts.num_elements(), pts, 1);
283

284
            diff = max(maxcoord[i] - mincoord[i], diff);
Sophia Han's avatar
Sophia Han committed
285
        }
Peter Vos's avatar
Peter Vos committed
286

287
        for (i = 0; i < 3; ++i)
288
        {
289
290
291
292
293
            if ((gloCoord[i] < mincoord[i] - 0.2 * diff) ||
                (gloCoord[i] > maxcoord[i] + 0.2 * diff))
            {
                return false;
            }
294
        }
295
296
297
    }

    v_GetLocCoords(gloCoord, locCoord);
298

299
300
301
302
303
304
    if (locCoord[0] >= -(1 + tol) && locCoord[0] <= 1 + tol &&
        locCoord[1] >= -(1 + tol) && locCoord[1] <= 1 + tol &&
        locCoord[2] >= -(1 + tol) && locCoord[2] <= 1 + tol)
    {
        return true;
    }
305

306
307
308
309
310
311
    // If out of range clamp locCoord to be within [-1,1]^3 since any larger
    // value will be very oscillatory if called by 'returnNearestElmt' option in
    // ExpList::GetExpIndex
    for (int i = 0; i < 3; ++i)
    {
        if (locCoord[i] < -(1 + tol))
312
        {
313
            locCoord[i] = -(1 + tol);
314
315
        }

316
        if (locCoord[i] > (1 + tol))
317
        {
318
319
320
            locCoord[i] = 1 + tol;
        }
    }
Peter Vos's avatar
Peter Vos committed
321

322
323
    return false;
}
324

325
326
327
328
int HexGeom::v_GetVertexEdgeMap(const int i, const int j) const
{
    return VertexEdgeConnectivity[i][j];
}
329

330
331
332
333
int HexGeom::v_GetVertexFaceMap(const int i, const int j) const
{
    return VertexFaceConnectivity[i][j];
}
334

335
336
337
338
int HexGeom::v_GetEdgeFaceMap(const int i, const int j) const
{
    return EdgeFaceConnectivity[i][j];
}
339

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
int HexGeom::v_GetDir(const int faceidx, const int facedir) const
{
    if (faceidx == 0 || faceidx == 5)
    {
        return facedir;
    }
    else if (faceidx == 1 || faceidx == 3)
    {
        return 2 * facedir;
    }
    else
    {
        return 1 + facedir;
    }
}
355

356
357
358
359
360
361
362
void HexGeom::SetUpLocalEdges()
{
    // find edge 0
    int i, j;
    unsigned int check;

    SegGeomSharedPtr edge;
363

364
365
366
367
368
369
370
371
372
373
    // First set up the 4 bottom edges
    int f;
    for (f = 1; f < 5; f++)
    {
        check = 0;
        for (i = 0; i < 4; i++)
        {
            for (j = 0; j < 4; j++)
            {
                if ((m_faces[0])->GetEid(i) == (m_faces[f])->GetEid(j))
374
                {
375
376
377
378
                    edge = std::dynamic_pointer_cast<SegGeom>(
                        (m_faces[0])->GetEdge(i));
                    m_edges.push_back(edge);
                    check++;
379
380
                }
            }
381
        }
382

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        if (check < 1)
        {
            std::ostringstream errstrm;
            errstrm << "Connected faces do not share an edge. Faces ";
            errstrm << (m_faces[0])->GetGlobalID() << ", "
                    << (m_faces[f])->GetGlobalID();
            ASSERTL0(false, errstrm.str());
        }
        else if (check > 1)
        {
            std::ostringstream errstrm;
            errstrm << "Connected faces share more than one edge. Faces ";
            errstrm << (m_faces[0])->GetGlobalID() << ", "
                    << (m_faces[f])->GetGlobalID();
            ASSERTL0(false, errstrm.str());
        }
    }
400

401
402
403
404
405
406
407
    // Then, set up the 4 vertical edges
    check = 0;
    for (i = 0; i < 4; i++)
    {
        for (j = 0; j < 4; j++)
        {
            if ((m_faces[1])->GetEid(i) == (m_faces[4])->GetEid(j))
408
            {
409
410
411
412
                edge = std::dynamic_pointer_cast<SegGeom>(
                    (m_faces[1])->GetEdge(i));
                m_edges.push_back(edge);
                check++;
413
            }
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        }
    }
    if (check < 1)
    {
        std::ostringstream errstrm;
        errstrm << "Connected faces do not share an edge. Faces ";
        errstrm << (m_faces[1])->GetGlobalID() << ", "
                << (m_faces[4])->GetGlobalID();
        ASSERTL0(false, errstrm.str());
    }
    else if (check > 1)
    {
        std::ostringstream errstrm;
        errstrm << "Connected faces share more than one edge. Faces ";
        errstrm << (m_faces[1])->GetGlobalID() << ", "
                << (m_faces[4])->GetGlobalID();
        ASSERTL0(false, errstrm.str());
    }
    for (f = 1; f < 4; f++)
    {
        check = 0;
        for (i = 0; i < 4; i++)
        {
            for (j = 0; j < 4; j++)
438
            {
439
                if ((m_faces[f])->GetEid(i) == (m_faces[f + 1])->GetEid(j))
440
                {
441
442
443
444
                    edge = std::dynamic_pointer_cast<SegGeom>(
                        (m_faces[f])->GetEdge(i));
                    m_edges.push_back(edge);
                    check++;
445
                }
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
            }
        }

        if (check < 1)
        {
            std::ostringstream errstrm;
            errstrm << "Connected faces do not share an edge. Faces ";
            errstrm << (m_faces[f])->GetGlobalID() << ", "
                    << (m_faces[f + 1])->GetGlobalID();
            ASSERTL0(false, errstrm.str());
        }
        else if (check > 1)
        {
            std::ostringstream errstrm;
            errstrm << "Connected faces share more than one edge. Faces ";
            errstrm << (m_faces[f])->GetGlobalID() << ", "
                    << (m_faces[f + 1])->GetGlobalID();
            ASSERTL0(false, errstrm.str());
        }
    }
466

467
468
469
470
471
472
473
474
475
    // Finally, set up the 4 top vertices
    for (f = 1; f < 5; f++)
    {
        check = 0;
        for (i = 0; i < 4; i++)
        {
            for (j = 0; j < 4; j++)
            {
                if ((m_faces[5])->GetEid(i) == (m_faces[f])->GetEid(j))
476
                {
477
478
479
480
                    edge = std::dynamic_pointer_cast<SegGeom>(
                        (m_faces[5])->GetEdge(i));
                    m_edges.push_back(edge);
                    check++;
481
482
                }
            }
483
484
        }

485
        if (check < 1)
Peter Vos's avatar
Peter Vos committed
486
        {
487
488
489
490
491
            std::ostringstream errstrm;
            errstrm << "Connected faces do not share an edge. Faces ";
            errstrm << (m_faces[5])->GetGlobalID() << ", "
                    << (m_faces[f])->GetGlobalID();
            ASSERTL0(false, errstrm.str());
492
        }
493
        else if (check > 1)
494
        {
495
496
497
498
499
            std::ostringstream errstrm;
            errstrm << "Connected faces share more than one edge. Faces ";
            errstrm << (m_faces[5])->GetGlobalID() << ", "
                    << (m_faces[f])->GetGlobalID();
            ASSERTL0(false, errstrm.str());
Peter Vos's avatar
Peter Vos committed
500
        }
501
502
    }
}
Peter Vos's avatar
Peter Vos committed
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
void HexGeom::SetUpLocalVertices()
{
    // Set up the first 2 vertices (i.e. vertex 0,1)
    if ((m_edges[0]->GetVid(0) == m_edges[1]->GetVid(0)) ||
        (m_edges[0]->GetVid(0) == m_edges[1]->GetVid(1)))
    {
        m_verts.push_back(m_edges[0]->GetVertex(1));
        m_verts.push_back(m_edges[0]->GetVertex(0));
    }
    else if ((m_edges[0]->GetVid(1) == m_edges[1]->GetVid(0)) ||
             (m_edges[0]->GetVid(1) == m_edges[1]->GetVid(1)))
    {
        m_verts.push_back(m_edges[0]->GetVertex(0));
        m_verts.push_back(m_edges[0]->GetVertex(1));
    }
    else
    {
        std::ostringstream errstrm;
        errstrm << "Connected edges do not share a vertex. Edges ";
        errstrm << m_edges[0]->GetGlobalID() << ", "
                << m_edges[1]->GetGlobalID();
        ASSERTL0(false, errstrm.str());
    }

    // set up the other bottom vertices (i.e. vertex 2,3)
    int i;
    for (i = 1; i < 3; i++)
    {
        if (m_edges[i]->GetVid(0) == m_verts[i]->GetGlobalID())
533
        {
534
            m_verts.push_back(m_edges[i]->GetVertex(1));
535
        }
536
537
538
539
540
541
542
543
544
545
546
547
548
        else if (m_edges[i]->GetVid(1) == m_verts[i]->GetGlobalID())
        {
            m_verts.push_back(m_edges[i]->GetVertex(0));
        }
        else
        {
            std::ostringstream errstrm;
            errstrm << "Connected edges do not share a vertex. Edges ";
            errstrm << m_edges[i]->GetGlobalID() << ", "
                    << m_edges[i - 1]->GetGlobalID();
            ASSERTL0(false, errstrm.str());
        }
    }
549

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    // set up top vertices
    // First, set up vertices 4,5
    if ((m_edges[8]->GetVid(0) == m_edges[9]->GetVid(0)) ||
        (m_edges[8]->GetVid(0) == m_edges[9]->GetVid(1)))
    {
        m_verts.push_back(m_edges[8]->GetVertex(1));
        m_verts.push_back(m_edges[8]->GetVertex(0));
    }
    else if ((m_edges[8]->GetVid(1) == m_edges[9]->GetVid(0)) ||
             (m_edges[8]->GetVid(1) == m_edges[9]->GetVid(1)))
    {
        m_verts.push_back(m_edges[8]->GetVertex(0));
        m_verts.push_back(m_edges[8]->GetVertex(1));
    }
    else
    {
        std::ostringstream errstrm;
        errstrm << "Connected edges do not share a vertex. Edges ";
        errstrm << m_edges[8]->GetGlobalID() << ", "
                << m_edges[9]->GetGlobalID();
        ASSERTL0(false, errstrm.str());
    }

    // set up the other top vertices (i.e. vertex 6,7)
    for (i = 9; i < 11; i++)
    {
        if (m_edges[i]->GetVid(0) == m_verts[i - 4]->GetGlobalID())
        {
            m_verts.push_back(m_edges[i]->GetVertex(1));
        }
        else if (m_edges[i]->GetVid(1) == m_verts[i - 4]->GetGlobalID())
        {
            m_verts.push_back(m_edges[i]->GetVertex(0));
        }
        else
        {
            std::ostringstream errstrm;
            errstrm << "Connected edges do not share a vertex. Edges ";
            errstrm << m_edges[i]->GetGlobalID() << ", "
                    << m_edges[i - 1]->GetGlobalID();
            ASSERTL0(false, errstrm.str());
        }
    }
}
594

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
void HexGeom::SetUpFaceOrientation()
{
    int f, i;

    // These arrays represent the vector of the A and B
    // coordinate of the local elemental coordinate system
    // where A corresponds with the coordinate direction xi_i
    // with the lowest index i (for that particular face)
    // Coordinate 'B' then corresponds to the other local
    // coordinate (i.e. with the highest index)
    Array<OneD, NekDouble> elementAaxis(m_coordim);
    Array<OneD, NekDouble> elementBaxis(m_coordim);

    // These arrays correspond to the local coordinate
    // system of the face itself (i.e. the Geometry2D)
    // faceAaxis correspond to the xi_0 axis
    // faceBaxis correspond to the xi_1 axis
    Array<OneD, NekDouble> faceAaxis(m_coordim);
    Array<OneD, NekDouble> faceBaxis(m_coordim);

    // This is the base vertex of the face (i.e. the Geometry2D)
    // This corresponds to thevertex with local ID 0 of the
    // Geometry2D
    unsigned int baseVertex;

    // The lenght of the vectors above
    NekDouble elementAaxis_length;
    NekDouble elementBaxis_length;
    NekDouble faceAaxis_length;
    NekDouble faceBaxis_length;

    // This 2D array holds the local id's of all the vertices
    // for every face. For every face, they are ordered in such
    // a way that the implementation below allows a unified approach
    // for all faces.
    const unsigned int faceVerts[kNfaces][QuadGeom::kNverts] = {{0, 1, 2, 3},
                                                                {0, 1, 5, 4},
                                                                {1, 2, 6, 5},
                                                                {3, 2, 6, 7},
                                                                {0, 3, 7, 4},
                                                                {4, 5, 6, 7}};

    NekDouble dotproduct1 = 0.0;
    NekDouble dotproduct2 = 0.0;

    unsigned int orientation;

    // Loop over all the faces to set up the orientation
    for (f = 0; f < kNqfaces + kNtfaces; f++)
    {
        // initialisation
        elementAaxis_length = 0.0;
        elementBaxis_length = 0.0;
        faceAaxis_length = 0.0;
        faceBaxis_length = 0.0;

        dotproduct1 = 0.0;
        dotproduct2 = 0.0;

        baseVertex = m_faces[f]->GetVid(0);

        // We are going to construct the vectors representing the A and B axis
        // of every face. These vectors will be constructed as a
        // vector-representation
        // of the edges of the face. However, for both coordinate directions, we
        // can
        // represent the vectors by two different edges. That's why we need to
        // make sure that
        // we pick the edge to which the baseVertex of the
        // Geometry2D-representation of the face
        // belongs...
        if (baseVertex == m_verts[faceVerts[f][0]]->GetGlobalID())
667
        {
668
            for (i = 0; i < m_coordim; i++)
669
            {
670
671
672
673
                elementAaxis[i] = (*m_verts[faceVerts[f][1]])[i] -
                                  (*m_verts[faceVerts[f][0]])[i];
                elementBaxis[i] = (*m_verts[faceVerts[f][3]])[i] -
                                  (*m_verts[faceVerts[f][0]])[i];
674
            }
675
676
677
678
        }
        else if (baseVertex == m_verts[faceVerts[f][1]]->GetGlobalID())
        {
            for (i = 0; i < m_coordim; i++)
679
            {
680
681
682
683
                elementAaxis[i] = (*m_verts[faceVerts[f][1]])[i] -
                                  (*m_verts[faceVerts[f][0]])[i];
                elementBaxis[i] = (*m_verts[faceVerts[f][2]])[i] -
                                  (*m_verts[faceVerts[f][1]])[i];
684
            }
685
686
687
688
        }
        else if (baseVertex == m_verts[faceVerts[f][2]]->GetGlobalID())
        {
            for (i = 0; i < m_coordim; i++)
689
            {
690
691
692
693
                elementAaxis[i] = (*m_verts[faceVerts[f][2]])[i] -
                                  (*m_verts[faceVerts[f][3]])[i];
                elementBaxis[i] = (*m_verts[faceVerts[f][2]])[i] -
                                  (*m_verts[faceVerts[f][1]])[i];
694
695
            }
        }
696
        else if (baseVertex == m_verts[faceVerts[f][3]]->GetGlobalID())
Peter Vos's avatar
Peter Vos committed
697
        {
698
            for (i = 0; i < m_coordim; i++)
Peter Vos's avatar
Peter Vos committed
699
            {
700
701
702
703
                elementAaxis[i] = (*m_verts[faceVerts[f][2]])[i] -
                                  (*m_verts[faceVerts[f][3]])[i];
                elementBaxis[i] = (*m_verts[faceVerts[f][3]])[i] -
                                  (*m_verts[faceVerts[f][0]])[i];
704
            }
705
706
707
708
709
        }
        else
        {
            ASSERTL0(false, "Could not find matching vertex for the face");
        }
710

711
712
713
714
715
716
717
718
719
720
721
722
723
724
        // Now, construct the edge-vectors of the local coordinates of
        // the Geometry2D-representation of the face
        for (i = 0; i < m_coordim; i++)
        {
            faceAaxis[i] =
                (*m_faces[f]->GetVertex(1))[i] - (*m_faces[f]->GetVertex(0))[i];
            faceBaxis[i] =
                (*m_faces[f]->GetVertex(3))[i] - (*m_faces[f]->GetVertex(0))[i];

            elementAaxis_length += pow(elementAaxis[i], 2);
            elementBaxis_length += pow(elementBaxis[i], 2);
            faceAaxis_length += pow(faceAaxis[i], 2);
            faceBaxis_length += pow(faceBaxis[i], 2);
        }
725

726
727
728
729
        elementAaxis_length = sqrt(elementAaxis_length);
        elementBaxis_length = sqrt(elementBaxis_length);
        faceAaxis_length = sqrt(faceAaxis_length);
        faceBaxis_length = sqrt(faceBaxis_length);
730

731
732
733
734
735
        // Calculate the inner product of both the A-axis
        // (i.e. Elemental A axis and face A axis)
        for (i = 0; i < m_coordim; i++)
        {
            dotproduct1 += elementAaxis[i] * faceAaxis[i];
Peter Vos's avatar
Peter Vos committed
736
        }
737

738
739
740
741
742
743
744
        NekDouble norm = fabs(dotproduct1) / elementAaxis_length / faceAaxis_length;
        orientation = 0;

        // if the innerproduct is equal to the (absolute value of the ) products
        // of the lengths of both vectors, then, the coordinate systems will NOT
        // be transposed
        if (fabs(norm - 1.0) < NekConstants::kNekZeroTol)
745
        {
746
747
748
            // if the inner product is negative, both A-axis point
            // in reverse direction
            if (dotproduct1 < 0.0)
Peter Vos's avatar
Peter Vos committed
749
            {
750
                orientation += 2;
751
752
            }

753
754
            // calculate the inner product of both B-axis
            for (i = 0; i < m_coordim; i++)
755
            {
756
                dotproduct2 += elementBaxis[i] * faceBaxis[i];
757
758
            }

759
            norm = fabs(dotproduct2) / elementBaxis_length / faceBaxis_length;
Peter Vos's avatar
Peter Vos committed
760

761
762
763
764
765
766
767
            // check that both these axis are indeed parallel
            ASSERTL1(fabs(norm - 1.0) < NekConstants::kNekZeroTol,
                     "These vectors should be parallel");

            // if the inner product is negative, both B-axis point
            // in reverse direction
            if (dotproduct2 < 0.0)
Peter Vos's avatar
Peter Vos committed
768
            {
769
                orientation++;
Peter Vos's avatar
Peter Vos committed
770
            }
Mike Kirby's avatar
Mike Kirby committed
771
        }
772
773
774
775
        // The coordinate systems are transposed
        else
        {
            orientation = 4;
Mike Kirby's avatar
Mike Kirby committed
776

777
778
779
780
            // Calculate the inner product between the elemental A-axis
            // and the B-axis of the face (which are now the corresponding axis)
            dotproduct1 = 0.0;
            for (i = 0; i < m_coordim; i++)
Peter Vos's avatar
Peter Vos committed
781
            {
782
783
                dotproduct1 += elementAaxis[i] * faceBaxis[i];
            }
cadfix's avatar
cadfix committed
784

785
            norm = fabs(dotproduct1) / elementAaxis_length / faceBaxis_length;
Peter Vos's avatar
Peter Vos committed
786

787
788
789
            // check that both these axis are indeed parallel
            ASSERTL1(fabs(norm - 1.0) < NekConstants::kNekZeroTol,
                     "These vectors should be parallel");
790

791
792
793
794
795
796
            // if the result is negative, both axis point in reverse
            // directions
            if (dotproduct1 < 0.0)
            {
                orientation += 2;
            }
cadfix's avatar
cadfix committed
797

798
799
800
801
802
803
            // Do the same for the other two corresponding axis
            dotproduct2 = 0.0;
            for (i = 0; i < m_coordim; i++)
            {
                dotproduct2 += elementBaxis[i] * faceAaxis[i];
            }
804

805
            norm = fabs(dotproduct2) / elementBaxis_length / faceAaxis_length;
Peter Vos's avatar
Peter Vos committed
806

807
808
809
            // check that both these axis are indeed parallel
            ASSERTL1(fabs(norm - 1.0) < NekConstants::kNekZeroTol,
                     "These vectors should be parallel");
Peter Vos's avatar
Peter Vos committed
810

811
812
813
814
815
            if (dotproduct2 < 0.0)
            {
                orientation++;
            }
        }
cadfix's avatar
cadfix committed
816

817
818
819
820
821
        orientation = orientation + 5;
        // Fill the m_forient array
        m_forient[f] = (StdRegions::Orientation)orientation;
    }
}
Peter Vos's avatar
Peter Vos committed
822

823
824
void HexGeom::SetUpEdgeOrientation()
{
825

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
    // This 2D array holds the local id's of all the vertices
    // for every edge. For every edge, they are ordered to what we
    // define as being Forwards
    const unsigned int edgeVerts[kNedges][2] = {{0, 1},
                                                {1, 2},
                                                {2, 3},
                                                {3, 0},
                                                {0, 4},
                                                {1, 5},
                                                {2, 6},
                                                {3, 7},
                                                {4, 5},
                                                {5, 6},
                                                {6, 7},
                                                {7, 4}};

    int i;
    for (i = 0; i < kNedges; i++)
    {
        if (m_edges[i]->GetVid(0) == m_verts[edgeVerts[i][0]]->GetGlobalID())
        {
            m_eorient[i] = StdRegions::eForwards;
Peter Vos's avatar
Peter Vos committed
848
        }
849
850
851
        else if (m_edges[i]->GetVid(0) == m_verts[edgeVerts[i][1]]->GetGlobalID())
        {
            m_eorient[i] = StdRegions::eBackwards;
Joe Frazier's avatar
Joe Frazier committed
852
        }
853
        else
854
        {
855
856
857
858
            ASSERTL0(false, "Could not find matching vertex for the edge");
        }
    }
}
859

860
861
862
void HexGeom::v_Reset(CurveMap &curvedEdges, CurveMap &curvedFaces)
{
    Geometry::v_Reset(curvedEdges, curvedFaces);
863

864
865
866
867
    for (int i = 0; i < 6; ++i)
    {
        m_faces[i]->Reset(curvedEdges, curvedFaces);
    }
868

869
870
871
    SetUpXmap();
    SetUpCoeffs(m_xmap->GetNcoeffs());
}
872

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
void HexGeom::v_Setup()
{
    if(!m_setupState)
    {
        for (int i = 0; i < 6; ++i)
        {
            m_faces[i]->Setup();
        }
        SetUpXmap();
        SetUpCoeffs(m_xmap->GetNcoeffs());
        m_setupState = true;
    }
}

/**
 * @brief Set up the #m_xmap object by determining the order of each
 * direction from derived faces.
 */
void HexGeom::SetUpXmap()
{
    // Determine necessary order for standard region. This can almost certainly
    // be simplified but works for now!
    vector<int> tmp1;
896

897
898
899
900
901
902
903
904
905
906
    if (m_forient[0] < 9)
    {
        tmp1.push_back(m_faces[0]->GetXmap()->GetEdgeNcoeffs(0));
        tmp1.push_back(m_faces[0]->GetXmap()->GetEdgeNcoeffs(2));
    }
    else
    {
        tmp1.push_back(m_faces[0]->GetXmap()->GetEdgeNcoeffs(1));
        tmp1.push_back(m_faces[0]->GetXmap()->GetEdgeNcoeffs(3));
    }
907

908
909
910
911
912
913
914
915
916
917
    if (m_forient[5] < 9)
    {
        tmp1.push_back(m_faces[5]->GetXmap()->GetEdgeNcoeffs(0));
        tmp1.push_back(m_faces[5]->GetXmap()->GetEdgeNcoeffs(2));
    }
    else
    {
        tmp1.push_back(m_faces[5]->GetXmap()->GetEdgeNcoeffs(1));
        tmp1.push_back(m_faces[5]->GetXmap()->GetEdgeNcoeffs(3));
    }
918

919
    int order0 = *max_element(tmp1.begin(), tmp1.end());
920

921
    tmp1.clear();
922

923
924
925
926
927
928
929
930
931
932
    if (m_forient[0] < 9)
    {
        tmp1.push_back(m_faces[0]->GetXmap()->GetEdgeNcoeffs(1));
        tmp1.push_back(m_faces[0]->GetXmap()->GetEdgeNcoeffs(3));
    }
    else
    {
        tmp1.push_back(m_faces[0]->GetXmap()->GetEdgeNcoeffs(0));
        tmp1.push_back(m_faces[0]->GetXmap()->GetEdgeNcoeffs(2));
    }
933

934
935
936
937
938
939
940
941
942
943
    if (m_forient[5] < 9)
    {
        tmp1.push_back(m_faces[5]->GetXmap()->GetEdgeNcoeffs(1));
        tmp1.push_back(m_faces[5]->GetXmap()->GetEdgeNcoeffs(3));
    }
    else
    {
        tmp1.push_back(m_faces[5]->GetXmap()->GetEdgeNcoeffs(0));
        tmp1.push_back(m_faces[5]->GetXmap()->GetEdgeNcoeffs(2));
    }
944

945
    int order1 = *max_element(tmp1.begin(), tmp1.end());
946

947
    tmp1.clear();
948

949
950
951
952
953
954
955
956
957
958
    if (m_forient[1] < 9)
    {
        tmp1.push_back(m_faces[1]->GetXmap()->GetEdgeNcoeffs(1));
        tmp1.push_back(m_faces[1]->GetXmap()->GetEdgeNcoeffs(3));
    }
    else
    {
        tmp1.push_back(m_faces[1]->GetXmap()->GetEdgeNcoeffs(0));
        tmp1.push_back(m_faces[1]->GetXmap()->GetEdgeNcoeffs(2));
    }
959

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
    if (m_forient[3] < 9)
    {
        tmp1.push_back(m_faces[3]->GetXmap()->GetEdgeNcoeffs(1));
        tmp1.push_back(m_faces[3]->GetXmap()->GetEdgeNcoeffs(3));
    }
    else
    {
        tmp1.push_back(m_faces[3]->GetXmap()->GetEdgeNcoeffs(0));
        tmp1.push_back(m_faces[3]->GetXmap()->GetEdgeNcoeffs(2));
    }

    int order2 = *max_element(tmp1.begin(), tmp1.end());

    const LibUtilities::BasisKey A(
        LibUtilities::eModified_A,
        order0,
        LibUtilities::PointsKey(order0+1, LibUtilities::eGaussLobattoLegendre));
    const LibUtilities::BasisKey B(
        LibUtilities::eModified_A,
        order1,
        LibUtilities::PointsKey(order1+1, LibUtilities::eGaussLobattoLegendre));
    const LibUtilities::BasisKey C(
        LibUtilities::eModified_A,
        order2,
        LibUtilities::PointsKey(order2+1, LibUtilities::eGaussLobattoLegendre));

    m_xmap = MemoryManager<StdRegions::StdHexExp>::AllocateSharedPtr(A, B, C);
}

}
}