Commit 0ca5a912 authored by Spencer Sherwin's avatar Spencer Sherwin
Browse files

Added cehck to read in hdf5 with 3 partitions which fails due to deadlock previously

(cherry picked from commit 9c97616b)
parent ae7df309
......@@ -157,6 +157,7 @@ IF( NEKTAR_SOLVER_INCNAVIERSTOKES )
ADD_NEKTAR_TEST_LENGTHY(Tet_channel_m8_petsc_sc_par)
ENDIF (NEKTAR_USE_PETSC)
IF (NEKTAR_USE_HDF5)
ADD_NEKTAR_TEST(TriQuadChannelHdf5)
ADD_NEKTAR_TEST(Tet_channel_m8_hdf)
ADD_NEKTAR_TEST(KovaFlow_3DH1D_P5_20modes_MVM_hdf5)
ENDIF (NEKTAR_USE_HDF5)
......
<?xml version="1.0" encoding="utf-8" ?>
<NEKTAR>
<GEOMETRY DIM="2" SPACE="2">
<VERTEX COMPRESSED="B64Z-LittleEndian" BITSIZE="64">eJxtlntUjGkcx6eLZmSkJsbItcSibFrCyHqfEEOSbXftbNFSWcKWMZl1LcnluJ2O3dUFbbXHHu3iiG3VWSt7TbI6LnGQTsfGYexBsdhyaKv5zvPU7/X+8+nM5/w+7/POvD3vq1B0PHTMxgbJ/okDGKg60i8qXivzjuAQeOOZe5njn/3DvRPohb5LRGjfRc3CO5P+6PajnvsuZH21vi5pe6cI7wLGuhv1xRU9ZetTgifh6fpU4AgPm6fn7wp+pXOe6zbSU9Z3BS/C0343cF4fm6d9NRgfXBexO8tD1u8OJsPTvhuZp/0eoN827Y2qFz1kfXcwDJ72Pcg87WvA3VmJmvRf1LK+J3gEnvZ7knna7wUGtP/wXWV9LWiGp/3e4At42teBXzxcLwXFuMj6fcAaeNr3AqMe2Tzt9wX/fVW92jrUSdbvB7bA035/Mk/7A0Db79Mi0f5AMAye9geRedr3BhsOlYeN294k6/uA7oU2T/uDyTzt+4LFFZayPK+nsv4Q8Bg87Q8l87T/VqfzW2X9YZ3Wb5X1h5N52h8BPrkc3roF3ZD1/cAmeNr3J/O0P1LxpkP03ybmRMAOjbpB9AOI3x6y4O5FH9Ef9eb+GftfgWD77f0Tvz7u3wHdN9h8jO36uB9Nytj/uR9D+rh+7oPIPPZ/7sd2mrfK1jeu0/qssvWNJ/P0/HrwRO7j1jvgqaw/ATwNT/vBZJ72J4JJrbtfZUGTrP8uaIan/UlknvbtP/TV1t0jUKVgtI8PFFXwtB9C5ml/sn19S/a07pB8f+N+CrgWnvanknnaDwUv+dQ0pSzl+zP308A6eNqfTuZp39Dp++PPF+5n2NcHT/szyTzth4Fqx7Ydlj8fuZ8F9oWn/XAyT/uzwdabd4ba0V3WjwBD4Wl/Dpmn/ffAtreXE7n8/YT7SNALnvbfJ/O0/wF4pW370/P3K+4/BK3wtD+XzNP+R2D711fF3w+5N4Ke8LT/MZmn/SjQdn/x92Puo8E6eNqfR+Zpf76i48Hfz7mPAe3v19j/uf+EzGP/534BmHRTF1pvuiQNjl7neddUzf1CRedjctt4zTnuY8Gx4XWmGsMdyZBz/rTSVMF9HHjBP4VFP6yWtiy7UGW0xnIfT/q25+A5/nxaBE7/Uhd3XXlHumqMkfL3neX+U3DN5sTzI5SNkmJXybAxCWJ9i8HiO33Stw56JJnzn8+7mir6S0BlU6r3H2tfSP8t7n/cP0PMJ4DeNW6vo4Y4skjDqfTsbOGXgiUhvUtbbr+SipaWX9maKfwy8EyhoTQ68pm0c2bEt8fyxfmXgw2Hpy33MHZhtzMTZ0/IEfOfgd9EljeyVUo2W1Ub/1uOmE8ELU+8fv51h4o1WzZey+0wnwTq9HX3jG4OzK8uuyJhv5hfAXqVlPmmlbyU1Nd6V2bnCm8Cc08dOdY1xJmpXC/fmr9P+JVg7aa4xrh1NZLZ5dafr/XV3JvBqcaG5Oaybmxn/srfB+wT60sGx2n/jvDWeLD7ScMXzskVfhW463CF69FGN2bYszfaYb/wFjDvqHPR40Ou7IpHqMLQ4fv5HAwqrXydts2dlT7IqryYKfxqML9+y/WDN7uzk9GKSTnZwq+xn79IrVpxWMNGau52L8gT518LDkjzVTYG92SzBmfNjE8Vfh1Y+EOGOcygZd4Tu1gu6MX/13pFx0PHcP9zvwH8zqwqGFvmyUyjp4dvThDrSwG/d6oP8DuuZc8LDwT/+DKW+1QwJ6flQUtKLzb5YFGyZv9Z3t8IBh742qnW0osFjTL116+o4PNpoCX5r+ZZ3ho2aVfxQacMcf5N4E5/39M372vZsm2+CRtM4vdPJ9eH/YP7/wGTbHSH</VERTEX>
<EDGE COMPRESSED="B64Z-LittleEndian" BITSIZE="64">eJx1mXfYj2UUxz28Zvbe3gYpo6kkWztRRFaINCkt2d6kzCbtsiqbdlaFSIqG0c5IUVQ0jOz+OR/X9Xyu6/f+c67Pee5zvvfzPOc+9/383ly50n9JBps7g82TwfKXpfFw3gycT0y+/JoP4wqIGVdQjH4h+Yk/Qcy8Cis/eYuIyVs0g04x+dErnkG/hPIzj5Ji5lFKjE5p+ZlfGTH6ZZWfeZcTM+/yYnQqyM/9VBSjX0n5uc/KYu6zihidqvJz/9XE6GcrP8/lRDHP5SQxOifLz/M6RYx+deXnOdYQ8xxPFaNTU36e72li9E9Xfp57LTHPvbYYnTry8z7qitE/Q/l5T2eKeU9nidE5W/7ssOeI0T9X+Xmv9cS81/PE6JwvP++7vhj9C5SfOmggpg4uFKPTUH7qo5EY/cbKT900EVM3TcXoNJOfemouRr+F8lNnF4mps4vF6FwiP/V3qRj9y5SfurxcTF1eIUbnSvmp15Zi9K8KS/1Sr63E1GtrMfV6tZh812g8ddxGTB23FZPvWs2H+m4npr7bi9G/Tn7qvoOYeXVUftZDJzHrobMYnS7ys06uF6PfVflZP93ErJ/uYnRukJ911UOMfk/lZ73dKG4atpcYnZvkZx3eLEb/FuVnfd4qZn3eJkbndvlZt73F6PdRftbzHWLW851idPrKzzq/S4z+3crP+r9HzPq/V4zOffLTF/qJ0b9f+ekX/cX0iwFidAbKTx8ZJEZ/sPLTX4aI6S9DxegMk5++kyNG/wHlpx8NF9OPHhSjM0J++tRDYvQfVn7610gx/WuUGJ3R8tPXxojRH6v89LtxYvrdI2J0HpWfPviYGP3HlZ/++ISY/vikGJ3x8tM3J4jRf0r56adPi+mnz4jReVZ++uxzYvSfD8s+1T3sC2L674saj/+lsOw3xE2Un349Scz4yWHr6/oU6dHfp4rp7y9rPP5XpEfcq2F7yT9N88A/XX7iZmj+7B8zxcTNkp99ZbaY8XPCss8RNzes96F5YuJeC0sfZ396Xcz+8oaYfetNMfpvhWUfY55vi5nXO2Li3lV+rs/X/NkXF4i5j4Vi8i0Ky/5J3GIx++h7YuLeD8u+Sv4PpMv1JWHZz9BZGpZ9mPtdprxc/zAs+zM6y5WX6yvCsh7Yvz8Sc65eKSbu47CsB+JWiVkXn4j5XvhUTNzqsNQ/cWvkJ+4zzY/vg881nu+jL+Sn3r4UM36t/Dz/dWK++9aLidsQljrgvXwl5nv5azFx34jR/1b+7LDfiRn/vXT5feAHMXX+o5jfMTYqD9c3haXOWTebw3K+4by4Rcy566ewnA84R24Vc275Wcz58hcx+tvCct5kntvFzOtXMXG/aTzz3xGWcyv6O8Xcx+9i4v7QePT/DNtf/l0az/XdYXmenI//EqP/d1jOy5yX/gnbUdf/Dcs5g/P0HjFxe8Nyvuacsk9+8u0Py7mb+f4nZj4HxMQd1Hju61BYzu+c1w+LuY8jYuKOhuU+iTsmZl78oM79ki9J0uNzwuZO0kyePOHnvvh+yErSzPvNK13mny/81Df1kz9JM7+jFkjSTFzB8FPH6BfSfI7//p2kmbjCyoN+EfmP/56dpJnxxcJP/2KexTUffocvEf4+Gl8y/PyfgLoqlaQ5J2xpvS/iyoR/uMaXDf9Q+cvJT1z58PP9x/UK8vOeK2qe3HcljSd/5fDzXIirEv4sja+q++L/SNX0HIjLTtLj0P8fds4iRAAA</EDGE>
<ELEMENT>
<T COMPRESSED="B64Z-LittleEndian" BITSIZE="64">eJxd1jV0VUEUheG8IAGCBAkSCKGgoaGhocDd3d3dgjvBIbi7E9zdCe7u7k5w94J/F9mv+dacmTv3zMyZt26BoP+/2TgH52JB66+G87CQtefjAixs8Tq4EIvgIlyMS7Co5bXUxhfDOFyGy7G45aN+zVMCV+BKy68krsLVNq4UNsQ1Nl9pbIZrcR2WwQ64HjdgWWyNG3ETlsPNuAW3Ynl7r57bhhVwO+6wPCriTnu/8quEu3A37sHKuNfm2YdV7P3RuB+rYrzlfQBVj9pPrV/nUB0PotZ3CGvgYTyCR7Emqi6P2fhaeBxP4Emsbc/F2Xjdh1OoulWd1bV5Ne401sMzlrfOtT5qXcpLddkAz6Luk+ZXXZ/D8za+EV7Ai3gJG6Puj+pU8zXBy3gFr2JT1Hmrjq6h7lW85aH6b27jr+MNbGF5K54fW+JNzGt5tsJ8Nr/y1729hbcxD7ax+e/Y+Lao+tU+6f60Q+23/q91Tu1R91Pzq/71v6P7dhd1jztiP7yH97ETDscH+BA7Yww+wsfYBZ/gU3yG0RZ/bu/vii/wJb7CbhbX+5Vfd9S6lNdr7IEJFn+DPfEtvkPtQy/LW/ur53rje5yAH7APTsWP+An74mf8grNQ5/YVv+F37I8/LA+NG4A/8Rf+xoGW7x/8i4MwKJA4f+UZY+MDjAvGwcS1Xr1f7xmC2vckPJcUhxLX+nROsTjM1qM8k6HqOjntEEyBI+hXvSbY+JG0U9JOhaE4in7Vq/LW+NHEVd+piav+Yi2eBtPiGPpzYzrLfyzxiKDEzyu/ccRDbN4o4uMxjHg4ba1T9az/vfSBxHlMJJ6BdkbMhJPoV70G27jJxMNpZ8YsOIX+rHau2VD3SnWjexJBexrt7Dav5ptOf45A4nWEEZ+BkcRzKg/iMzEUte4o1D3Wc8ojF+q7PNKe037ou1n56Zy0Pn3n635r/3QP9V2vc9N3nf6v/wGnEdb1</T>
<Q COMPRESSED="B64Z-LittleEndian" BITSIZE="64">eJx11OlTjWEch/FIkiRJkkrlSFJpL5Vd9l2LJXsoyhISWYrQhpDQf+vN9XvhmtGbz8z3zFydec793ElJ//4twaWY/J99Gabgcn2eiiswTZ1k7SsxXf1wFWbgavVTtGfiGvXje2bhWsxWP1X7OsxRP/7/eszFDeqnac/DjerH98zHAixUP137JixSP55bMZbgZvUztCdwi/rxfEtxK5apn6l9G5arH7/PdqzASvWztFfhDvXjeVdjDdaqn629DuvVj9+lARuxSf0c7c24U/04Jy3Yim3q52rfhbvVj/O0B/fiPvXztO/HA+rHeTyI7XhI/Xzth/GI+nG+juIxPK5+ofYTeFL9OIen8DSewbNYpP0cnscOLMZO7MJu9Uu0X8CL6sf7cwkvY4/6Ce1X8Kr68f5dw+t4Q/1S7TfxlvrxPvXibbyjfpn2u9infrx3/XgP76tfrn0AB9WPe+ABPsRH6ldof4xD6sd98QSf4jP1q7QP43P1474ZwRf4Uv1q7aP4Sv24P17jG3yrfq32MRxXP+6Zd/geJ9Sv1/4BP6of994nnMQp9Ru1T+OM+nE/zuJn/KJ+s/avOKd+3K/f8Dv+UL9F+zz+VD/uywX8hb/Vb9P+BxfV/wsQW05j</Q>
</ELEMENT>
<CURVED COMPRESSED="B64Z-LittleEndian" BITSIZE="64">
<E>eJx12nmUTnUcx/Ex1rGMZZrBjLFFsmTJkpIlkiUSiWRJZMlSVMhSKO0LLcpSkSURiiQiWUKWsoRCRaFQVNKiSH/4fjrH+/j4532cec31mLnPvb/7/T0JCef+lMhyrtkTLvwnWzRYQqbx2eEToxnG54bPGk03Pj+8WsT4i+D09cLGF4XPEU01vjh8zmiK8RfD54oWMv5S+KRoQeMvg9fPN7/xl8PniSYbfwV83mg+46+Gzxctavw18MnR3MZfB6/zI8n46+ELRHMYfyN8Qf3d+JvhC0WzGH8rfIq+YPxt8Dq//064sL8DPlXfZ45/J3xa9JQ5/l3whaN/GX8vfJHo78bfD6/35wnjH4BPj/5i/EPwGdGfjX8Mvlj0V+Ofhs+MHjX+OXhdX34w/iX4EtHvjZ8MXzJ6yPip8KWiB4yfCV86+q3xc+B1ffzG+Lfhy0T3GL8Ivmx0t/FL4S+J7jN+BXy56JfGr4HX9f0L4z+BLx/93PhP4StEtxq/Hb5idJvxep3ylfDv0n8Fr/vTZuN1nshXjuYx16vv4atEN5rj/whfNaqfM72uG/LVoh8br+uYvO6vq4zXdVu+ejSn+f+eha8RXWaOr/uUfM3oB8YnwdeKvm98MrzWB4uNT4GvHX3P+CLwV0aXG58Jf1V0kfGl4etEjxhfDl7rmzTz+6oEXzf6rjl+Nfh60S3G14KvH11ofB34BtF3jG8Ar/XZ28Y3hm8Yfcv45vCNonOMbwV/bfRN49vCN47uN74DvNaXbxjfBb5JdKbx3eGbRqcb3xu+WXSq8f3hm0enGH8PvNbHm4wfAt8i+prxI+BbRl8xfjT8DdGvjH8UvlV0kvFPwWt9P9H4cfCtoy8bPx6+TfRF4yfB3xR93vgp8G2jBcz1Zwa8nk/GmuPPhm8Xfcb4+fDto08a/y78LdGlxi+B7xB93PgP4fV89ZTxq+E7RncYvx6+k/5d4zfDd44+avw2+C7Rh43fBa/nw9HG74XvGh1l/H7426PjjD8E3y36oPFH4btHRxj/M7yeb4cbfxK+R3SI8afge0YHG/8vfK/ofcZnTTzf946+bnwueD2fLzA+H3yf6HjjC8H3jd5jfGH4ftGBxheD7x/da3wpeM0XZhh/Cfzd0Z+Mrwg/AN9HXxVe/89+xteE18/xM+Ovgtd8pI/x9eF1nvU2/lr4QdFHjG8Gr/P+a+NvgNf7qrvxN8FrvrPT+Fvgh0bnGd8Zfli0m/Hd4HUd6Wp8L3hdp74zvh+85lNdjB8Ir+tmZ+MHw4+MrjN+OPyoqO579KPgdV/Ja9Ybj8Brvqb7PP2T8LrPtTN+LPyY6FrjX4TXef+n8RPhdZ8eavxr8JoPtjF+OrzWMSuMfxP+iehB4+fBax3W0viF8FontTD+fXjNN1sZvxxe68jmxq+Cfzb6qvHr4LWuPWv8JnitYxobvxVe89lGxu+E1zq+ofF74F+ITjN+H7yeKzoYfxBe64Azxh+B13w5q3m/H4fXc9Fcc/zf4CdEGxj/F/z/z2nm9ZyB13PgR+b4iVnP95qP1zM+J7yeY4ub15MXXuex5lj0BeH1XF3b+DR4Pef/aHwG/NTofONLwmudetz4svA6j2sZXwFec5DqxleB17qwmvE14DWXqWL8lfCa+1Q2vh78rOhK4xvBa2510vim8LOjlYxvCa85WgXj28BrTlfe+Pbwep8fNr4TvNZtZY2/HV7nZTnje8JrLlnG+L7wmnv+a/wAeD13JZr3+yB4zWHXm+MPg9dcuKTxI+E11y5pXs8YeM3ZtU9I/wS85vizjX8WXvsEmca/AL8kmmH8BHjNidKNfxVe+xxrjJ8Gr32UpsbPgtc+RC7z858LrzmR9hnoF8BrXdjf+MXwus8VMX4Z/MroaeNXwmsfK834tfCro0uM3wiv31Oq8VvgP462NX4HvJ4TShu/G17PUSnGfwOv93kv4w/Aa99xtfGH4TdECxp/DF77oMXM+XkCXnN/fS6G/k947eMeM/40vPaJfzM+S7bzveYm243PAa99sg3G54HXvniy8QXgtS/exPhUeL3uvManw2tfv4fxJeA1p85jfBl4zVn+Mb48/K5okvGV4fX5gFnGV4fX5yRyGl8bXp/b2GV8XXh9LqSG8Q3hNZf8w/gm8NyXom8BrznaZONbw+tzMInGt4PX51TqGt8Rfj++Tt8V/j8pukT8</E>
<DATAPOINTS ID="0">
<INDEX>eJxd2nfcV2MfB/D7bu+90x72yB6JRKSQmZEZsmdJRkYiSmZCWdlbtqKyszOKULJJRh7lsf3xvD/P63Vfv3/er+/3nK51rnOd65y7ior//SpZjdVZo7Ama7E267Au67E+GxTnNWQjNmYTNi3Ka8bmbMGWha3Ymm2KemNbtmP7iqq/tG81dmDH4rxO7Mwu7FqU043d2YM9uTrX4Jpci2sX563Ddbke1+cG7MUNuRE3LsrJOG/CTbkZN2euyxbckluxd1Hv1uzDbYpy0p9t2ZfbFf3I+f24PXdgf+7InTiAO1dU/aU/AzmIu3BX7sbB3J17cM+i3L24N/dh5skQ7sv9uD8zX1LvARzKA4ty0o+DeDAP4aE8jMN4OI8oyku9R3I4j2LG+Wgew2N5XFFOyj2eJ/BEZvxO4sk8hacW9Y7gSJ7GUcx8Op2jeQbPLMrJ+WfxbI4pyjmH5/I8nl+0P+MylhdwXNGPC3kRx/Piot5LOIETeSkn8TJezit4Ja/i1ZzMaziFGZdreR2v59Sivpw3jTfwxqLem3gzb+F03lp4G2/nHbyzOO8u3s17inrv5X28nw/wQT7EGXyYj/BRZn17jI/zCfYqzn+ST3EmZxU+zWc4m3OKfszls3yuKOd5vsAX+RIzLllXX+Y8vsJX+Rpf5xt8k5mneb69xfl8uyjnHb7L97igOC/9WMj3+QEXFX7Ij/gxM0/SzsVcwk+K9i/lp/yMnxf15Tp/wS/5FbMeZF/yNb/htxVVf2nnMn7H5UW7Mk+/5w/8sSgn4/cTV/Bn/oe/cCVX8Vf+l7luv/F3/lGUk/b9yb/4N//hUmbjWclqlVXLqS6uwZqsVVm1nKxbteXrsC7rVVatv764ARuyEXPfNRY3YdPivGZszhZsydy36Ucrtmabol2xrXw7tudqxfh0EHdkp6L9ncVd2JXdinq7i3uwJ1cv+pn7ZA3xmlyL2b+mvLW5Dtct+pH9yXri9bkBe3FDbsSNuQk3Lc7fjJtzC2YflPO35Fbsza1zvZ3fR7wNt2XfotztxP24PbPPSbk7sD935E7F+QPEO3Mgs8/IfTdIfhfuyqwDKXc3Dubu3CP1ci/uzX04hHnu7yvej/sz+5acd4D8UB5YtO8g8cE8JPOjaFfaeRiH8XAewSM5nEdl3Cqr1pd93THiY3kcs19Kv4/nCTyRJxX1n8xTeCpHcCRP4yieXrQ/9Y8Wn8EzmXXtLJ7NMelfUV/OP5fn8XxmXzpWfAHH5TgvKtaF8bw4159ZJ/McmSCeyEuLeZBxnMTLeDmv4JW8KuPEycV4pD/XiKdk/jLPteyjr5O/nlOZdS/r1jTewBuL/ub5f5P4Zt6SeeB4xnE6b+VtvL1o5x3iO3lXMb55Ltwtfw/vzb+rqFrufbyfD/BBPsQZfJiP8NFiPXpM/DifKO6zrAtPyj/FmcU4zxI/zWc4u2hXypsjnstn+Ryz33le/AJfZPZ1Oe8l+Zc5j6/wVb7G1/kG32Te994Sz+fbxbi8I36X73EBZxX1L+T7/IDZZyzih/yIH2c+VFRt52Iu4Sdcyux3PxV/xs+Z94nU/wW/5FfsXJT7Nb/ht1yWfiv3O/Fyfl/0M99NfhD/yJ+Y7xFZf1fw58wPji3a+QtXchWzv8nz99fch/wt64zjWQ9+l/+Df2b9cvwv8d/8h/kwW8m8t1YTV2cNLirGsaZ8LdZmHdZlPdZnAzZkxqWRuDGbMOtjvsM1lW/G5sx3oZTbgi3Ziq3Zhm3Zju1TL/Pe3UHckZ2Y9S/rdGf5LuzK3B/dxN3Zgz2Z+zbfC1eXX4Nrpl+OZx6uJb8212H2m7nP15Vfj+tzqfMyPhuwFzfkRsx3wo3Fm3DTon15Xm6Wf8ctmPfzLcVbsTe3Lq5Xvrf3EW/DbdmX27Eft+cO1arWl+9I/cU7cifmu1TW3QHyO3NgxsnxrPuD5Hfhrsx1yP27m/xg7p7xd3wP8Z7ci3tzn6KdQ8T7cj/muZXz9+cBHMoDeRAP5iE8lIcV5Q4TH84jmH1QvhMdKT+cR2V9cTzz/mj5Y3hs6q2o2s7jeDxP4Ik8iSfzFJ5a9DPtHCEeydNy/zme7z6j5E/n6Kx3xuMM8Zk8i2cX7Uo7x/AcnsvzivrPF4/lBcz3tYzPOPkLeVHmd0XV33j5i3kJs55mXZsgP5GXMs/TSZmHvJxXMOOR+/NKXsWrmb8bpT+T5a/hlKxvji/ltfLX8Xrme8RU8TTewBuzDvBm3sLpvDXzpKj/NvHtvCPrl+NZ3+6Uv4t3Z7wdz/PmHt7L+3h/cZ0fED/Ih5i/P2SdnsGH+QizrmS//aj4MT6e6+R4xucJPsmnOLOYX7PET/OZrIOOzxbP4Vw+W1yHjN9z4uf5ArNfyni/KP8SX86804/sd+bxlYwr83zOffcaX+cbnFr0+02+xfl8m///7il+l+8x7wmZDwvkF/L9or8fiBfxQ37E2UW/PxYv5hJmn5vzPpFfyk+ZvzfmufSZ/Of8gnkPzXezL+W/4tfFPMhz4Rv5b7ks96Xj+f74nfxyfp957HjG+wf+yJ+4IuOW/XrGP+NblLdSvIq/5noy1yHvt7+Jf+cfmV+OZxz/lP+LfzP/LyL7p3/k8x8oKpn7LP2pJl+dNViTWQdriWuzDjO+dcX1WJ8NmPHIc7+hfCM2Zt5Tsk9oIt+UzZh9WvaTzeVbsCUznzI+reRbsw3zfMl7Q1v5dmyf+vMeI16NHdiRnZh9fmdxF3Zl5mk3cXf2YE9mfP8FlEUQwQAA</INDEX>
<POINTS>eJxlnXdATl0cx9tLezyVEVFEUklI6h6RUimykiRkVFYqoyIhRdIrpNJQRiFEpOxKShIKiUhlVEJ7jxfP79z7OPf55/s+Pu9zxu/8fmffGx8f96MfGy/4YZsSMtTzHGa0pYCCf+bjB+0TOiVRmaCEcgOP3na/94LmAvj39pr/nfqhhFBAuO8Mu3KaC4KuS7iq5GDMQSvuzx52uPETzYXw78VShzq6cpDB308NzYVBL603szb24yA7m5SQ+eeraC4C6jy4dkPMeQ6q35b3rcnjA81FQRWKwo50veQg/UXT7qPQMpqLgYaO17j3rpaDPII13HZ5vqK5OB/vRwWZuXx5MfL9E5pLgN4PeXmk6LkyuiinMf6IVxHNB4HO5kQ4b/RWRvmnnq4PvsrYTxL0+Rn7CdKqyujGhKA7FpqlNJcCveAlljj5vgLyNLCYu9+NyV8a9AyKVa3fpoAWLrhX3reZ4TJYveufZf+SR2WVfZ0z/RkuC7oreere6PXyaPEGU5VDIQyXA93mXdRtoy6PTA/fOCsYznB5UO/QdH7dx8qoQX9RrY1nHs0VQF8HNp084aCMqkpKz8mNuU1zRdApO3Qn9NZzUNm+7jb5siSaK4FeFKzR1b7GQe0pscY3e1bRnAPaysd/r+A2Bx2c07bq4dTLNFcGHRK1r13gGQfde3iq1PvkI5qrgJrpiuiZVP7+vbJJvlMj0z6qoLNXHw3uSOGgUI+VEc3CTPsMBnV2XfnpvS4H5Yb/7ClayPx+CLbfGn2jhxlKqHFdR6GtxVOaDwXtHJo1c66EIrKZX7llhylj32GgP4MXlByMUUSl+k43PzYw8akGWt38w+XxOCW0WL68a9Yphg8HHSfnYHSjQJEVXyOwfd9s1k37nX5dhouiXQ8Tn+qg7mZ6G31mKiI5vqDZx8OY+B6J07/SeHFagwKyibB0PaTxkuajQJPsHzchH1FkK/bBNSeaqZ8GqENBqFm8gBhalfmf2WUeronLsefLvChpcSQtdXRiEA8fDVo3hVoRMVgC3Vl5dORyHj4GNOGyUNqvZAlUKmfOZ8nDtUA7PmiIBJ4QZ9lnLOjuq/5qnx+JI/tXaT+c+xj7jAN9mqe4LFNNAqVsn2UQFM3YRxtUpSL15OEdEuji7DGhNlMZ+4zH/18wp7y4Q4aVvw7oLqk9UstjZNDyEPdVS3jynwC61rD4rVGdNFK3St+7lCd/XVC75UPPcqZKo6B9R5EQT/56oKdrgt6efSeFMpbxmUZHMfbRBzXMLOwPDJZFmfUnC19EMnwiaM9gvW9rN8uiB2vdN1tMYdI3AP3Sd/HmjRmyqEqnfM23KKZ8k0BffNLcL6Aoi/Z2j7oyk6d+hny8HxXUe6/6ZaVgNs0nk/xCU8ncVS40n0LwVD3r1c/2PHyA/2UqwZt//1rW4QnNjUBdfPtq9onLo9wJj+ZITWLqNw30Z9kizY0VcshsscvQ1kimfsagvoZX1i6+KoeqTHdv/9HL1G86qKtxpV3YSTlW+5uAPmvIjZtVLIsMe/kat59g7G8Kujjyqf+6hXJol/H5KfURDMf/8ZEqXXbonRzK9rUOcPqP4QiXU3/5UFvDQai3Srt0LE98zAA9bWk+y2qGJMrLGJnQyOMfZqDCLjobZs+VQgdDVT1u8fCZoC+nfpb1bZZDtwMb1zdmPqT5LFx+8yWat6LlUL51ft2O6PG0/c1BK+YXGrUiOeS2Zo2mST7TfrNBp3Cq7dTl5VDt5rEr58Ux7WcBGh09UD+wWwmZnU3zlj+VT3NLUIP5iTOidikhGc1F6afj79N8DujXwXbbf/oqoe7dciqvz7rT5bcCjfzcmzprhxLyU/MQ2K7B1M8a9Exr8HCFG8po45QFXtUtT+n0bUBflednaWooo2fykaX1W1/QfC6oyAPRhVOPc1DNwb0bP38vobktaEp6uJe1JQepTxfe9szoFc3tQA+nSYptuSSPdOS/SCUmMPaZh7XNtbYxVx6lbMt71DDtJc3ng+oGTJF0bZZHD7anbhtyqpzm9qCy4hJ6ZSMUkMfdOYrn+j7RfAFo6Z+wMlLA/k3zhaCrdN64Fzqw55eLQK8s9osvGM6eXy4G7QoYUfL4qyJrfrkEVC1QQ7TJ+Pf4OuqklWsAU38H0LzyRhvj0Ypo+zRHm7YbjH8tBV3ty3ml0KeAplf+suurNKS5I6jAkOnLGkoVUJSVhJ1SAtP+y0DFL6aIRzXKo9BP4iKyMUz+TqCvo6KC07wUUPZg09S94QxfDpoYHCL8pF0B/Vy41b5tP8Od+Xg/Kih2WkraBWWm/VYQfHZGS9+rHUz7uRC8OypBk+8H034rCX5wxp8JMNN+q3D9/w5giqz2XQ3ab7dB1++mIuJrtC9BvUz6rqByb15LrwlSRGK9b80ljzHlWwOq7kT9tF2kiCRVJL9F6jD1WwsqdHzExxxXeWRbPfjWNB7/XofLubrjUsFHOSQyI/jWjniGrwd9OLF4Z7GDHHqQ0HIrg6f/cMPpL5bWuR4nx6qfO65frW+DedHv/onwfw9Qy31hg49qsONnA+jxYactK/zlUSoRfxuxnYo+fZkj89s+RP03ge5clxt69rYCy36bQcMEzusPrFFAAoT9t4AevlQgcblJGlkePbGM/xRTf0/Q1t32giIBMuiDt63bOh6+FXTA8Ey9n7ksOr5nxUetWIZ7ge4fH1fq/VQW2R/esqCeh3uDznJo9O6+PwiFnt6aq8YTHz6gY+peRD49Mgh9aZX5UJLDxOc20Oa9vvI+BoOQqUTZtTVv6+9jvh303lCNI2pvJZD+2mrV3mwmPnfgdJoH380+JIa6t+15ExfN5L8T2/nlVsXVKuKote+o6g0e7gvqdC5I5aOGBMoP7bL5yMP9QOfujBq6VH8QilFduUeMp37+oI9Migx3WUmgUT9anORzmPLtApV4IZPhEC2OnG/PKT/i85qu325Q+1ULJk+qFUO29roG63nsEwBq+PuHkgKyLP/dA+oS5COc8UoGhXZo9Xjy+G8gaG+62vNqXxkUdFLlUEs04197QaOq86Nk1GVQK1U5TNCI8c992L5FR3KiguSQp97J3aE86e8HVZu8437dEjmkHb7LOjiGST8I9HHCytvTxskhn3tF0R086R8AfTnyfddudxFW/YJBh5y9lbKzQASFVlkkreLJPwT0rESP42lfUdQ8rzQlhqd+B0F1PE2l8seLoWcfOVJbpjL5HwKNu5N6VXyGEBKTKKlYHsPMf0JB+28aPPSLF0KWqzj+D3jm34exfV8d355gJ4wybq67WMgzfw8D7W5pm5DLJ4Ii9js1uPPMj4+AOv70pwydRVjzx3BQ7vpigCL5f6BeFaFqNcYDVJpDUfwRnvSPgo5KqO9PLuujMrSy1kTHMOWLAC1ZOadyg1cvJXG6PExpGlO/Y6CDb93XCLzVQ0m+US6MimPscxxU8u8AIslqvxOgToI2Mi4pkshypqTBep72iwTVuiy1W8xGEi18L/P5Nk/7nQRtW/y8Ie3XIKSqJ7rqHE/7RYGqGFV+c5DmR9qVUQVup5jyRYNWibTat33kQ5JblsybYMTULwZ0sanhuBFBfKjffek5KR77nAIt8tnGb63Nhzqv6+zaxmPfWNCga1d8Bvb8Tn+bgl0hT/5xoGePm/qq1vdTsY4OcwJjGR4Pavp4uPikkl5Km4qbOZXHvgmgjcmPracc7GK1/2nQnJHdQ38Ud1KDK+Jy0njKlwi6JEV075ONHVSZcPDQFaeY+iWB/tRR+nZOsp3avqAk3cmYsc8Z0AcplpnL7NuoUCu7c1dPM+U7C9pTzL9+QWMrtZP4/TnQrMwVd3ZNbmXlfx50Z9I96RT/Flb5k0FvFGy7nzC4hVX/FNAx1XGXJDe2U1+ni3PG8JTvAmjD1X2bfu7vpKz+S5+ikcDwi6DXd7npv4jtpq7ULF+qHs/wS3z/fmB9SfNUgsP8jeaXCQ7zN5pfITjM32h+leAwf6N5GuiNz6r7Doz4SXmdbnd6HcCU7xro8oQv948v+kE12A++nKfDlO86qP3sLd8+vvpOzXu/5ZDWMaZ86aAWP7plxi6sp8qv1aSb86x/b4By/bOO1T43Qav5buYfWy/H2h/IAH3WtTA5WEaOtb9wC2tz6wG/DFl0j9ifyMTlcHuztjTgG9XdbdBzIJHZX87Cdpw0Pcn7TA21cbJ65MR5zP7ybdAFAzPvaB+ppGq2vTNcspzZX74D+mHv6qbVfu8pL5GKvH4jZn/5LmjMIeUxXskfKMllWxWj8kpofg/UcdwXnbzqT9Tm6LytyYLM+ghPBNzCTQteNFVT8Vf1kzbuK6Q57ugsjqmsfiv6mXrt4Eydjsmn+UPQ5IYlVVY916mYuu++LS3M/mT2P+V/SrVvD/QT9GLyz8H2C5YyOnr3DTWs57CRVANT/lzQWzOUMweq+qg098elByKZ+c8j0FWPei6gvX2UQP5wgSEPmPlLHq5fr/umh0W91Nktl83LLYbS6T8G3Tzp3USk3Es5TvTsHP+YmT/lg76+HOH644IUCib2vwpAT5r4th2bK8XaP3sC6vBs5YFpTZKs/bdC0LCTm+T3PZRkjb9PQRsvzd4g5yCMqiI32U7jmR8Wgfq3rhbY/EUYKQlo7bbm4c9ADZ7rHXdrEkH1B7bLb+DhxaDfL/RpuvaJovxB+ecP8/DnoE0ykycWK4uin/2dxSE888sXoHMCRHQvrBVBv5c5xc8EqvC2Et9L0NM/32jvvymMAsMOZfLxzC9LQL3WH/3hTwmyxu9S0NSHUsoasYLo3oGli515xu9XoPoSDePzrYXQz7fFjwN5xu/XoBkLCs3ce4SQ49n6T7N5xu83oBXtziHNj3upyGST1zNOMPUvA10R97Rh5ZVuyqHOM6c8guFvQatnTp3/8kQnpaB9/qrnfwwvBxXtClB/5NtBda4bdm08z/r8HejosHy7lUM6qNs7s2x3ZTL2eQ9aM+9zQ/jadsopvFq/da8+bf8K0ERF/kP3r7VR9k7fzfgKmfb5AHqqIezLG0cxtFagRnYBj/0/goYmNS7m5xND+mKplhMscuj2qwTd7bCgQPucKMo4RiVs52n/T6A79296Ok60ieI7fEtrkhtTvyrQE67f4x01mqkbmcuScjYzvBo023T7to7fs//enfUb9PwZXgPaoCJoe3x5O2VjvHNKfAjDP4P65EdOyXOQRTav27ILHzDl+wLaf0DZbDyfLPI0iWmfmSNL//4rqEyYXvRoOxlU6ddi35PL2Ocb6JUpm4K/+HJQuHtFqltFIp1+LejP5w9VhRQ5qDxpRfOYu5k0rwMdv14hdeRlJaQfohUsZc6cH9WDBk3an3HkeCslcDD87pEXTPm/g8ZGvp+RO76FipxZaX3/njXNG0Cvd0581vGoidpe2EEpRDPl/wHqVmvw8qtGI+U5p/JkYBAzPv8EPfys3t9Ov5kKbBsZaMazv/sL9Nr1RK1Mk1bqYOJad0Ge+WUjqKae5EyV0X1UjfrjN1pTmPhqAlUYN3f6l+weqvKZRu2rKCY+m0EFNI4YXl/eTTXezfZHPPHdArr5d+9YmEjPP2neCqr+XrrfUVMA2Vve2RcVxfhHG6iRRYJRXT4/Qk37WgR54r8dtGesv/xjDj+yFB65cClP/9EBek9y6fekNXwoRdLFcQlP+TpBX++oG60vxsfqv7pAq2y2b82TFmT9vhu0UP1Fm8d1AVb+PaDp7Vo75RcLsMrfC6ptIjpr68YGyiuDI2r8ifGfPlzPKP/utEl1VNrWtObyhi007wd90NqU9qvnCxXlXPb8XdIDOv0B0MlzKz3fW36mLKOf3hP1LKA5PuA/K3DYZGFaI+Xj9cn3QTzjf/zA3e/sErk1qPF3/orUpMTJdP4CwJ1rP8YbFP+kaoOHX3W5yZRfEPjf5entOlb7CwFvDxJx3DPuO9W9JyPeuoexrzDwRjPpr0s//6AMOStN9oQx9hUB3jYgkaVq10htHrfIxE2Dsa8ocL9k88vBK9nrPzHgS29mxaxKk2CtH8WBT83VCTEZEEdWxPpTAjjXv8VZ/jMI+PBzH95mRVZTpUETnl4yf0RzSeBxq9XkDz74SHUXi6hfvptJcyngff6BW+Pnv6ViNVYuEa5IpLk08Gfjd6NlP15RQR7Pih3qVtFcBrhjrm10o0s1FXXjsvo431y6fWSBX76wRPDA7o/UqFGjKrptb9FcDnhykdyrccZvKT/vS6VB5+NpLo8viMAH7kfQ+SsQHM7vaK5Icu75Hc2VCA7nd3T+HOCP3k0YuP+klnK4mSl2opFpH2XgCmvCS2P5v1FBqudH+tgx7asC3OXXr2Rfoy+UY8E7g4f3mPMXVeCTBMJ9cuZUU1ad3oeGWTLnN4OBb7rtofiM/wNVc0xv56RFzO+HAPfZkmWitOU1lXRptI6jSCnNh2L/eadiXuP5khq1zE/hiydzfjMM13/Nc++pqxoozU2uylLjmf5bDXi/saqXrmIdddZ/XPG0MJ7zf+Dd8qs9Rz/+Qg0Pbdy//icz/x/xT3yWs+JTHfiqGx55blYVLPuOBF4WRM0WPvaJZd9RwP31n1x4zVfDsq8G0b5/j+FnMvlrEtzG3zz7kVQVzUcTHOpB8zGkf/K3fpu4lIl/LeAv2w3GGZeKolbVueMDeNYHY4HbRLX1uASJIUsf96IzPOuDccALjG49OzBFHM2tnTnZlWd9oA08va4gfqhqCuVZZxdam86Uf/w/7Z9NbS7JlQjx/0BzHeBbfQNWBXwoonpffus3PVpG8wm4/92S2NGdpYw+L3486pwmYz9d4Dv/TM8NlZHHn21gbYbrAT933UhgfxoH1Q971uqsx3B9bJ+/+6scVv82ETj3HowKuq57SF6y8TvNDYCvhvJdLfyR38jDJwHfA+UL78hcmNTMcEPgZ6B82zX2Vy1oZfhk4JVQPucH3yKntjF8CvAx1hxH91EcZEKUfypw/jG/Z86xSmg6wY2AvxWwyfihpIQmEXwacCNIfxORvzFwOUh/DcGnA6+D9F0JboL7LzhfI+tnCnyGhFNDiB37fgIFvH72+hSdZHnW/QQEPGKft2tJvzzrfsIM4E6qf07AFFjrWzPglqe0pF+FKLLsOxP4urvex1SEFFn2nQX86IeHKssDFFj2Ncf9M6RP2nc28CBIn7SvBfBLkD5pX0tsfzifJu07B/vPtrgtM5vlWfWzwv2LfaZakIc8q37WwN/olBY9/izHqp8N8EMjTt1IP8mPPMXNpEx45r9zcf9uIrVRJ5QPBZY/vBR+kuG2wL9k9FvZ9vVTMRcoq2qe/RU74NOh/KT95gFXhvKT9psPvAHKT9rPHsc/nI+S9lsAHJ//c7810nwh8ChoH0GCLwK+HdqX5IuB24F/iBF8CXB8Pk3m7wD85Pv0iIxT/ChCc2GQMc/6aCmeP3XnWV9LFkCx3jdLanjOdxyBq6m+FUpNF0TxuZwRh3n4MuB6W+72fkzjQ84lG3Y5P2LmL07AW8vrcx0GBqig7y/nlIYq0Hw58AOlTkdaYvupmuUxIX48+2POwPH5NFm/FYT/kfZzIfyX5CsJ/yftuwqPP7vnhMUtlmP512rgUxxdjSufy7L8yxX3v5MD6kbMkWX51xrg5nB+SfrXWuD4fJOs/zrgvwy56ZP1Ww9cE8pHcjfg1lA/sv7uwFtib+2V3iHD6h88gNv+ud61SZrVP2wAfli99uSINVKs/mEjMf6Q5dtEjF8k30yMf2T5txDjO2k/Tzx+xXHrR7bvVuBroX5k+3oBT4D6ke3rDXwInP+R7esDHJ8PkuXbBjwE0ifrvx3P36B8JN9BtB9pn524/PaJFj+sJFnt6wt8vkTZmS0mg1jt64f7z2xJvlZdCVb7+hPrR7J+u4CL5XB/T5Z/N/A1kD/JA4DfhPKT9duD01/dtSdRQZxVv0D8+8G6v6fmYqz67cXxX+JqlNIpwqrfPuBeUD+yffcDl4b8Sf8KAn4f8if96wBwd8if9K/gf+aHIqz8Q4AvV0kvjahNpZyTCoyQZx7ND/6zvn5EtZ4YMalg9G2aHwKe80T0q+W8l9Ti4hV1w98k0TwU+9/ZwpkdVweon8T+2GHgaaptAvpd/az9tTA8PocPz3E362ftzx0BHgrzY7L9w4G7wvya5P8BRzA/J/3j6D/rJxXER/CIf/oPERY/RvgHmf9xwr9IfoLwT7J8kdi/BNXqvD8Ks/z3JF6fmf85OBVi+W8UcNEQ2/4DTwVZ/hsN/GxX1GzXIyKs9V0M8N2nE1Xu1Imw1oengDtYXKyXMxdFzcT6Mhb4rBEZg0oGlVC16m8NUhuZ9XEc8Ph9T80SdEup3jaVvFsnmf2jeOCdXz/t3LDgFXX2tMghp6mXaZ4AfOMjbVk7V2lk9nCk8Tue+0engdcGVjxY4CCFvqrsl/mPhyfi/oUK2+xgI4liPL/UmPPwJOB7wf5k/J4BXgL2J+P3LHAZsD8Zv+eA+8L5Ehm/5/H4kCV6ZcE1AVb7JwPP3GLyu4fkZ7V/Co5/La+1jpF8rPa/AHzOsHf894J+sc6/LwIP/sC/x1OpiXX+fQm4RyonQGh9M+v8OxW4PJSftN9l4Leg/KT9rgBfCuUn7XcVeDHsb5P2SwOO97+535j4ukbYh4zP64R9SZ5OtA8Zvzdw/EL7kvnfJOZfZPtmEPM3sn1vEfM/sn0z8fo12y7/YrEQao/aLDSTZ/6eBXx4cNY8zffCSPtg2QhZHn4bx5/NqHcJ30SQy07K5APP/fk7/4zvXRRZv7vAF3pGUsPud1Ok/e7h8fHv/KeXxe8DvxjxoFimtZ8i7fsA+CqRi3vsZdn3zx4Cf1KBjnf9Xr+Q98+ygeumlyWfXiLIun+Wg9cvfa9+e5Aga38gF/jo8tfC58y6qDGHh5v84rl/+gj4nSB+T4sjnZRumO+K/khm/MsDPm+iTkVdeQelJJAxS20SM/49Br6nVCwh42AnRfpHPu7f/zz+tK2dIv2jAPiFCrcn71a3UqR/PAF+Pe5X8mPrFtb+aOE/85suioyvp8D3Q/nI+C7C7QvlI+P7Gc4fykfGdzHwe1A+Mv/nwMULYgePrpFl3Z98AXzytOIiziFZ1v3Ll8BXpw7sFtWXRV7E/c0Swj7cb4z/lRL2Jf33FdE+JH9NtC/p32+A55tWaHnrNrPavwyvz69YVPkqNrLa/y1eH09bayDY8p3V/uXAufe2yln3k94BH1zmWvGg4xU1z0fS8Eg3Ex/v//n9E4p7z4mJrwrcv/46o2wWeI1Ca7x17Icx8fkBj59QP9J/PgLXhvqR/lOJ4xPqR/rPJ+Cyu7jnc6T/VAHX+OjKfwXJIs2R108NP8n0b9XAhS9KebzylkFTRtkI3eThNcBzT84vtVkvjaw0vm6w4nk+6DNwiQcqU7ICv7Ha7wvwK3/9q4bVfl+B3+48rJ+i/ZHVft+Aj4P0SfvV4vkhpE/arw6vHyB90n71/9ivnGW/73h+vq/9ftXQ99RX4n5YA55/XXw79rbbO9b9sh94flhy+3hERjnrftpP4EHqp5c+OqKA2lV0LfZHM/tLv/D6OuLQwtJJCmis0y9bF2lrunyNeP0h4GNX/U4eZXQUiSY+Z/aXmnD/DOtH0n7NeP0F60/Sfi3AhWD9StqvFbgWf/NUxTmvqf2W0Z6ik5n2awM+8Pdc5wnVfWno75Ge4e3A1X8ZNo3Ju0Ydkjltlo0Y3gF8a929BJ02fhTbq5Sjn83UrxP4MImO5vJofnSjIKNh9CER2n5duH8Zpzf7gCk/8jnWIiLIs3/XjX+fKxEifEIaNRL333vw+vFNV8HKL1Ks+/O9wHfV14rfN5RCYcT9+75/1l/4w/R//Xh9CfUn+88B4Iq7uPYjOX6AfzLYn+xf+YHj80EyfwHgF6H/ess9f6LtIwh8WCm3/1vKPX+iuRBwbeg/K7jnTzQXBj4PyufoaG0zrJ3xHxHgelC/iX/vuTNcFPgSsI/Kjao1e7oYLoZfYIDTszMfsqab4eIEh/MtunwSwC9D/VO551s0HwR8NNQ/mHu+RXNJ4AZQf3fu+RbNpYB3wfjjwI0fmksDd1J7WjTF5i2lKlXj53ieOV+UAX5Fe/y9EZGvqbxPjXc1NzDni7K4fkZhl8U/lVALk4fsjQxlzhflgJvaaSydYqGEpkQH+KX/ZJ6flAe+TEp+544Piii/5swK4zDmfokC8J1PB6KyvBTR4gkFM3O1mfWjIvBO21POjk8+UOuI+ikBf//3/nYN5UJwDnDj+oS5EfO+UU4EVwYum8K9X0zaTwU4vn8M32iuCnwopC9I8MHAn0L5SD4E+FeonxjBhwLH8wsy/2G4fUbfObIi6zseH2muBvzVn26x8hceH2k+HPjzg72xoQLNeHyk+QjgeP/q5e2L8g0HTtNcHTje/0Jx8gPuklk0H4nbH/bPwn+u675az9yPG/VP/0Hbl25/DeAvYX5C9k+auP+A+Q3JRwPH8z+y/xqD/c/qzqJ1jhxUazenWucms7+iBfzCsqz5d/w56KXAkUFvFJj9lbHAyzfcmiuTwEHaJzWtZrRdpPk43P89Fys4cUwePS9b7DfmCTO+aAMPjNgQ6Lz29/jaEqTnFqdH8/HAly56MW2MkTyqnD9a/hDP89E6wM1zKeOgb82s+1ETgHPkrmbtGNvMuh+lC7zWWW3qBo8m1v0oPeCDwb/I+NMHXg3+RcbfROwf4F9k/BkAvwrPX5DxNwk4fn+IwIr31mfqGfsbAsfvD7F3WRGmLplF88nA8ftDhgvLinQFnab5FOBHlsXIDzUWYd0/ngrc5ZusgWWVMOv+sRFwfa/gBd7Bwqz7x9OA4+dLuN+Y+DUm4o/sH6YT8UtyEyL+yf7DFHgxvD+mPEDEuO4/Zn5JAcfvnzm+PspwoT8zv0TA8ftrzmspRVWmM/PLGf+MfyoI7ufQ3Oyf/rOLVf+ZwOXmpBd93tDJqt8s4Gsz1YK+z29ncXPgt8YcMmme3Mqq/2zg/KLvCg+e62b1jxbA0//ez+9l9Y+WOP60BB393/ez+sc5OP6GvYzR75ZFVduKrT7nMfFthedP6xYnvyySRR53FWc79qvS3Bq41rX36Z4Jsuh60/Qbrjz3m22AO7Zcv/06u521vzEXj+9Pb7mar25j7Y/YYv89c1f6plArNZbYX7ED3vDWNX53tjTymFUemMpzP3oe8EiL5CattdJoVmjqhQYkSPP5wM0y6maVSkijculZrrN4np+1/2d87WLF9wLgmtA+ZP+yEPgbaB+yf1kE3A/ah+xfFgO3hucbyfyXAFdbbbmrKZgPkf7hALxwRNrW9Ufp/WGaLwUe8FF5fWWMACL9wxH4eEifrN8y4GWQPlk/J+ChkD5Zv+XAB2B/jayfM3C8/8b9xsTHCqL8ZHy5EPUn+UrCfmT8rcLzd7A/mf9q4MmXnTPlbwqy7O8KfEa7llN4jhDL/mvw/Mq0ZWDQC2GW/dcCP16nLmjQ203tbOtq98xn/HMd7n8chp8ZGd1FtWtVtOq/HU/z9cDDHg+dKT+5k3INHvggnMXEhxtunyWfL6mJctBF4RduE5Yz82N34Is2DzKPCFVCs14a/lSdx8yvPYAPD574UVhWCW0unpu1N5GZn28AHgP2If1nI3BxsA/pP5uAbwH7kP6zGc+ff3CfDyb9ZwvwCODcb0z7eeL+DdIn/WMr8Mo2bvlI7gX8ANSP9B9vPH7EiQQ4N4iw/MMHOPr6YuT7LlGWf2wDHj7h1OMlouIs/9gO/NyIApvG22LoCfH89g4BXE4709kccdbz3zuxf35+rRvrKY7CiOfHfYHrwvujSPv5AX+kwy0faR9/4D5fuPUj+S7gI8E+pP12A3cHTvpPAB7fIX3Sf/YAlwL7kf4TiO0D9SP9Zy9wu74qTqi6BKv99gEv+bvuH8Rqv/14frXjGv/OSZKs9gvC43OMRfbMH4ooe2LCfw7fGPsfAG67KndPw2glZOa04kWHKtN+wXj8GkehEy5KSGTBngDTNcz8PwT49Bj1If5ICQksmNpxKfEBnf9B4ClHVgqvK1dEY/RXlFxv3kL//hBwxX2Jv+ZvVUSxQ3O0+D8x/UcoHn8fLY8fIvOG8lQa5bOj/SKd/mE8vy1rjFox6S0V72GqOF6RWT+FAX9Yv+/YmaXvqJ9iMcLLbzLPXx7B/Rc8f8j9xvhHOF4/gX1J//oPuCe0D8mPAk/r5bYv6X8RxPwQ7mfT/BjB/91H+t1vExzuZ9P8BPBxFp3zU22lWP4VCXxfeM7vHkia5V8n8fqy7HD0OTcZln9FYfsuF55+/PIvaufyhy+WmjL7E9HAlbSd90dpf6dOR8xoGfaD2d+IAe7WmVEUe+ErVZafo1R9iuGngKdC+5DxE4vnL1A/Mn7jgCdC/cj4jQfeDPUj4zfhn/mRDCv/0/+M3zKI+41p30TCfqR/JBH2J/kZov1I/zmL/W/IPMleM1lW+54DHv13e0+W1b7ngeetHpy2Y54cq32TgbfXGijWjBFGHkO1Pn3h2f9NAZ6f3hUWViSEpHUmTvk6tZl+fvIC8KjdD0SnegqhyPDQTeK5zPziIrYf7N+R9b+E4w/2/0ieChzvn5L2ufxPfOAPw68AvzdHfHDFaknW+wmv4vl9ktFKoxuDWO8nTMP273FLiRQaxHo/4TXgmbD+Iv3zOvBtsH4j/TMduA6s/0j/vAEc378h93duAsf3d0iegccnuH9C7v/cAr4X/IssfybwS+BfZPmzcP8M/kWW/zZwb3h/Hxlfd4A7H6gXzUlUQs3yHsp39hXS5bsL/PR5i6vnapTQqPwJDpcEmfHpHvCax2cXH9TkoCdCKRo785j3v90Hjt8fyP3G+McDIj5I/3tIxBfJs4n4JP0zB6/vpqblXy8UQsFXQpzVeJ4/zwUekjvOMOO+IIr/pehWx3O//RHwH7bnkrKuC6BUvUSvGzw8D4/vT00cIj7IsfqHx8A9Lv55bkye1T/kAw86eG6u+Dd5Vv9QgP0bzvdI/3oCHJ8/krwQ+CA4XyT97yme38L4SfpfEfCzMP6S/vcMuCmM36T/FQO3AfuQ6T8HbgD2IdN/AZwD9iHTfwn8hQr3+Q/Sv0vw+Ab3T8jz21LgMnB/hTy/fYXXT3D/hTy/fQ28SGLs6vIaQdS43dNZk6f/fYPj6+mHxRMNBFHNuSEbji7qpfvvMjw+hkZYhe4VQKYZjsIuPP3/W7x+hPpxvzH+XQ68OoRrHzI+3gGXBfuS/D1eP0H7kPFTgeMv49N3tdkKrPfvfsDj6+wDfkk+Cqz3734EvumN9qDR59jv360EPr6poG2ktwIrfj4Bd1C6YlHVrcCKnyrgAUbHohMCFVnxUw1c/bmNlc8uKVRbmbHfg2d/qAbbf9id88+LJFGl3VyNJQ6d9PvLPgPP3TBWcNxQSXRPY6xEE8/7Db7g9UFytvpJVw5r/fwVuInHzclrlnJY6+9vwC11L1gb2LLX77UC2A6TXQYv6aEkifdX1eH+46rZVKfT3az3X9Xj+Y2TnWx8XRfr/VnfcXw/m3B5Us9napal8gyZNcz8vQF4bNzmsuCCr5TbE4mZ71WZ9H9g/9yYxv/+RC1loRmQtOAbk/5PvD5p5LYvGf+/gD9R5LYvGf+NwAWgfcn4bwKeIct9fzQZ/83A8fkW6V8twPH5GOlfrcDx+RrpX23AV0H+UGqat+P+eSq3/GT8dQD3g/qTvBP4erAfGZ9deHyG/o28/9ANXBL6N/L+Qw/Rv5H3H3qBF9cOLS+QUWLFZx/w7D8ZRCqx4rMf+4/eN3/zYRxWfA7g9emeIr25/hx0PHP7bpNz8XT++AX9SbaeYUoqHBSjn5Mwyu4WzfmB6w7j1H9IV0Lh01p++fnm0lwAuC+Un/Q/QeAhUH7S/4SAH4Xyk/4nDFwT/j4A6X8iwAf5JCclmnymIqp2XTbUZPoPUeBUo1/9Uq3P1GLplGe/itxpLgZ8q8e8ifIKnylTM3Xn2Lj7dPriwPHfJ+B+Y/xDAngklJ/0r0HA3aH+JJcEPgPsR/qfFPCrsoJ9ZoUCrPfHSQMPGuKolzhYgPX+ORngy0dfWz3gzo8kiPfXyQLH5x9k+eSA4/MTkssDx+cvZPkVgM+E5wvgfhttf0XgbvB8AtyPo7kS8HB4vgHu19GcA7yxcsvdTZc4KJp7f4jOXxn4qD/D+0RlNCz17/0hmqsAt9IydvmeqYziuPeHaK4K3BOevy7fszYgTpN5fn8wcPz8dpJwh8mdqzzP/wO/Bs9/v1aU6brmVUTzocAboPxLufdb6PyHAR8L5Z/Gvd9CczXgK6D8atz7LTQfDhw/nw33W2g+Ajg+XyP7H3Xg+HyO7H9GAsfne2T/Mwr/ARDIn6uMf2gQ9if9S5NoP5KPJtqf9L//AbO7E84A</POINTS>
</DATAPOINTS>
</CURVED>
<COMPOSITE>
<C ID="1"> E[0,7,17,12,32,37,27,47,57,62,52,22,67,42,72] </C>
<C ID="2"> E[150,245,281,288,3,6,152] </C>
<C ID="3"> E[77,84,89,99,129,139,144,104,149,114,119,124,109,134,94] </C>
<C ID="4"> E[73,205,163,156,80,75,83] </C>
<C ID="100"> T[60-157] </C>
<C ID="101"> Q[0-59] </C>
</COMPOSITE>
<DOMAIN> C[100,101] </DOMAIN>
</GEOMETRY>
<EXPANSIONS>
<E COMPOSITE="C[100]" NUMMODES="3" TYPE="MODIFIED" FIELDS="u,v,p" />
<E COMPOSITE="C[101]" NUMMODES="3" TYPE="MODIFIED" FIELDS="u,v,p" />
</EXPANSIONS>
<CONDITIONS>
<SOLVERINFO>
<I PROPERTY="SolverType" VALUE="VelocityCorrectionScheme" />
<I PROPERTY="EQTYPE" VALUE="UnsteadyNavierStokes" />
<I PROPERTY="AdvectionForm" VALUE="Convective" />
<I PROPERTY="Projection" VALUE="Galerkin" />
<I PROPERTY="TimeIntegrationMethod" VALUE="IMEXOrder1" />
</SOLVERINFO>
<PARAMETERS>
<P> TimeStep = 0.001 </P>
<P> NumSteps = 100 </P>
<P> IO_CheckSteps = 1000 </P>
<P> IO_InfoSteps = 50 </P>
<P> Re = 200 </P>
<P> Kinvis = 1.0/Re </P>
</PARAMETERS>
<VARIABLES>
<V ID="0"> u </V>
<V ID="1"> v </V>
<V ID="2"> p </V>
</VARIABLES>
<BOUNDARYREGIONS>
<B ID="0"> C[1,3] </B>
<B ID="1"> C[2] </B>
<B ID="2"> C[4] </B>
</BOUNDARYREGIONS>
<BOUNDARYCONDITIONS>
<REGION REF="0">
<D VAR="u" VALUE="0" />
<D VAR="v" VALUE="0" />
<N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
</REGION>
<REGION REF="1">
<N VAR="u" VALUE="0" />
<N VAR="v" VALUE="0" />
<D VAR="p" VALUE="0" />
</REGION>
<REGION REF="2">
<D VAR="u" VALUE="1.0-y*y" />
<D VAR="v" VALUE="0" />
<N VAR="p" USERDEFINEDTYPE="H" VALUE="0" />
</REGION>
</BOUNDARYCONDITIONS>
<FUNCTION NAME="InitialConditions">
<F VAR="u,v,p" FILE="TriQuadChannelHdf5.rst" />
</FUNCTION>
<FUNCTION NAME="ExactSolution">
<E VAR="u" VALUE="1-y*y" />
<E VAR="v" VALUE="0" />
<E VAR="p" VALUE="-2*Kinvis*(x-6)" />
</FUNCTION>
</CONDITIONS>
</NEKTAR>
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment