Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
Nektar
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
87
Issues
87
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
44
Merge Requests
44
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Nektar
Nektar
Commits
18ebba85
Commit
18ebba85
authored
Nov 13, 2019
by
Zhenguo Yan
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
TMP
parent
34e8eb90
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
1046 additions
and
1318 deletions
+1046
-1318
library/SolverUtils/Diffusion/DiffusionLDG.cpp
library/SolverUtils/Diffusion/DiffusionLDG.cpp
+325
-548
library/SolverUtils/Diffusion/DiffusionLDG.h
library/SolverUtils/Diffusion/DiffusionLDG.h
+30
-57
solvers/CompressibleFlowSolver/Diffusion/DiffusionLDGNS.cpp
solvers/CompressibleFlowSolver/Diffusion/DiffusionLDGNS.cpp
+575
-645
solvers/CompressibleFlowSolver/Diffusion/DiffusionLDGNS.h
solvers/CompressibleFlowSolver/Diffusion/DiffusionLDGNS.h
+33
-53
solvers/CompressibleFlowSolver/EquationSystems/NavierStokesCFE.cpp
...ompressibleFlowSolver/EquationSystems/NavierStokesCFE.cpp
+83
-15
No files found.
library/SolverUtils/Diffusion/DiffusionLDG.cpp
View file @
18ebba85
...
...
@@ -32,611 +32,388 @@
//
///////////////////////////////////////////////////////////////////////////////
#include <SolverUtils/Diffusion/DiffusionLDG.h>
#include <iostream>
#include <iomanip>
#include <iostream>
#include <boost/algorithm/string/predicate.hpp>
#include <SolverUtils/Diffusion/DiffusionLDG.h>
namespace
Nektar
{
namespace
SolverUtils
{
std
::
string
DiffusionLDG
::
type
=
GetDiffusionFactory
().
RegisterCreatorFunction
(
"LDG"
,
DiffusionLDG
::
create
);
namespace
SolverUtils
{
std
::
string
DiffusionLDG
::
type
=
GetDiffusionFactory
().
RegisterCreatorFunction
(
"LDG"
,
DiffusionLDG
::
create
);
DiffusionLDG
::
DiffusionLDG
()
{
}
DiffusionLDG
::
DiffusionLDG
()
{
}
void
DiffusionLDG
::
v_InitObject
(
LibUtilities
::
SessionReaderSharedPtr
pSession
,
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
pFields
)
{
m_session
=
pSession
;
void
DiffusionLDG
::
v_InitObject
(
LibUtilities
::
SessionReaderSharedPtr
pSession
,
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
pFields
)
{
m_session
=
pSession
;
m_session
->
LoadSolverInfo
(
"ShockCaptureType"
,
m_shockCaptureType
,
"Off"
);
m_session
->
LoadSolverInfo
(
"ShockCaptureType"
,
m_shockCaptureType
,
"Off"
);
// Setting up the normals
int
i
;
int
nDim
=
pFields
[
0
]
->
GetCoordim
(
0
);
int
nTracePts
=
pFields
[
0
]
->
GetTrace
()
->
GetTotPoints
();
// Set up penalty term for LDG
m_session
->
LoadParameter
(
"LDGc11"
,
m_C11
,
1.0
);
m_traceNormals
=
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
(
nDim
);
for
(
i
=
0
;
i
<
nDim
;
++
i
)
{
m_traceNormals
[
i
]
=
Array
<
OneD
,
NekDouble
>
(
nTracePts
);
}
pFields
[
0
]
->
GetTrace
()
->
GetNormals
(
m_traceNormals
);
}
// Setting up the normals
std
::
size_t
nDim
=
pFields
[
0
]
->
GetCoordim
(
0
);
std
::
size_t
nTracePts
=
pFields
[
0
]
->
GetTrace
()
->
GetTotPoints
();
void
DiffusionLDG
::
v_Diffuse
(
const
int
nConvectiveFields
,
const
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
&
fields
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
inarray
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
outarray
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
pFwd
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
pBwd
)
{
int
nCoeffs
=
fields
[
0
]
->
GetNcoeffs
();
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
tmp
(
nConvectiveFields
);
for
(
int
i
=
0
;
i
<
nConvectiveFields
;
i
++
)
{
tmp
[
i
]
=
Array
<
OneD
,
NekDouble
>
(
nCoeffs
,
0.0
);
}
m_traceNormals
=
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
{
nDim
};
for
(
std
::
size_t
i
=
0
;
i
<
nDim
;
++
i
)
{
m_traceNormals
[
i
]
=
Array
<
OneD
,
NekDouble
>
{
nTracePts
};
}
pFields
[
0
]
->
GetTrace
()
->
GetNormals
(
m_traceNormals
);
}
DiffusionLDG
::
v_Diffuse_coeff
(
nConvectiveFields
,
fields
,
inarray
,
tmp
,
pFwd
,
pBwd
);
for
(
int
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
fields
[
i
]
->
BwdTrans
(
tmp
[
i
],
outarray
[
i
]);
}
}
void
DiffusionLDG
::
v_Diffuse
(
const
std
::
size_t
nConvectiveFields
,
const
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
&
fields
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
inarray
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
outarray
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
pFwd
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
pBwd
)
{
std
::
size_t
nDim
=
fields
[
0
]
->
GetCoordim
(
0
);
std
::
size_t
nPts
=
fields
[
0
]
->
GetTotPoints
();
std
::
size_t
nCoeffs
=
fields
[
0
]
->
GetNcoeffs
();
std
::
size_t
nTracePts
=
fields
[
0
]
->
GetTrace
()
->
GetTotPoints
();
void
DiffusionLDG
::
v_Diffuse_coeff
(
const
int
nConvectiveFields
,
const
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
&
fields
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
inarray
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
outarray
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
pFwd
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
pBwd
)
{
int
nBndEdgePts
,
i
,
j
,
k
,
e
;
int
nDim
=
fields
[
0
]
->
GetCoordim
(
0
);
int
nPts
=
fields
[
0
]
->
GetTotPoints
();
int
nCoeffs
=
fields
[
0
]
->
GetNcoeffs
();
int
nTracePts
=
fields
[
0
]
->
GetTrace
()
->
GetTotPoints
();
Array
<
OneD
,
NekDouble
>
tmp
{
nCoeffs
};
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>>
flux
{
nDim
};
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>>
qfield
{
nDim
};
Array
<
OneD
,
NekDouble
>
tmp
(
nCoeffs
);
for
(
std
::
size_t
j
=
0
;
j
<
nDim
;
++
j
)
{
qfield
[
j
]
=
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
{
nConvectiveFields
};
flux
[
j
]
=
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
{
nConvectiveFields
};
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
>
volumeFlux
;
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
>
qfield
(
nDim
);
for
(
j
=
0
;
j
<
nDim
;
++
j
)
{
qfield
[
j
]
=
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
(
nConvectiveFields
);
for
(
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
qfield
[
j
][
i
]
=
Array
<
OneD
,
NekDouble
>
(
nPts
,
0.0
);
}
}
for
(
std
::
size_t
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
qfield
[
j
][
i
]
=
Array
<
OneD
,
NekDouble
>
{
nPts
,
0.0
};
flux
[
j
][
i
]
=
Array
<
OneD
,
NekDouble
>
{
nTracePts
,
0.0
};
}
}
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
traceflux
(
nConvectiveFields
);
for
(
int
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
traceflux
[
i
]
=
Array
<
OneD
,
NekDouble
>
(
nTracePts
,
0.0
);
}
// Compute q_{\eta} and q_{\xi}
// Obtain numerical fluxes
DiffuseCalculateDerivative
(
nConvectiveFields
,
fields
,
inarray
,
qfield
,
pFwd
,
pBwd
);
DiffuseVolumeFlux
(
nConvectiveFields
,
fields
,
inarray
,
qfield
,
volumeFlux
);
DiffuseTraceFlux
(
nConvectiveFields
,
fields
,
inarray
,
qfield
,
volumeFlux
,
traceflux
,
pFwd
,
pBwd
);
NumFluxforScalar
(
fields
,
inarray
,
flux
,
pFwd
,
pBwd
);
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
qdbase
(
nDim
);
for
(
std
::
size_t
j
=
0
;
j
<
nDim
;
++
j
)
{
for
(
std
::
size_t
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
fields
[
i
]
->
IProductWRTDerivBase
(
j
,
inarray
[
i
],
tmp
);
Vmath
::
Neg
(
nCoeffs
,
tmp
,
1
);
fields
[
i
]
->
AddTraceIntegral
(
flux
[
j
][
i
],
tmp
);
fields
[
i
]
->
SetPhysState
(
false
);
fields
[
i
]
->
MultiplyByElmtInvMass
(
tmp
,
tmp
);
fields
[
i
]
->
BwdTrans
(
tmp
,
qfield
[
j
][
i
]);
}
}
for
(
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
for
(
j
=
0
;
j
<
nDim
;
++
j
)
{
qdbase
[
j
]
=
qfield
[
j
][
i
];
}
fields
[
i
]
->
IProductWRTDerivBase
(
qdbase
,
tmp
);
// Evaulate <\phi, \hat{F}\cdot n> - outarray[i]
Vmath
::
Neg
(
nCoeffs
,
tmp
,
1
);
fields
[
i
]
->
AddTraceIntegral
(
traceflux
[
i
],
tmp
);
fields
[
i
]
->
SetPhysState
(
false
);
fields
[
i
]
->
MultiplyByElmtInvMass
(
tmp
,
outarray
[
i
]);
}
// Initialize viscous tensor
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>>
viscTensor
{
nDim
};
for
(
std
::
size_t
j
=
0
;
j
<
nDim
;
++
j
)
{
viscTensor
[
j
]
=
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
{
nConvectiveFields
};
for
(
std
::
size_t
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
viscTensor
[
j
][
i
]
=
Array
<
OneD
,
NekDouble
>
{
nPts
,
0.0
};
}
}
// Get viscous tensor
m_fluxVector
(
inarray
,
qfield
,
viscTensor
);
void
DiffusionLDG
::
v_DiffuseCalculateDerivative
(
const
int
nConvectiveFields
,
const
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
&
fields
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
inarray
,
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
>
&
inarrayderivative
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
pFwd
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
pBwd
)
// Compute u from q_{\eta} and q_{\xi}
// Obtain numerical fluxes
NumFluxforVector
(
fields
,
inarray
,
viscTensor
,
flux
[
0
]);
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
qdbase
{
nDim
};
for
(
std
::
size_t
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
for
(
std
::
size_t
j
=
0
;
j
<
nDim
;
++
j
)
{
int
nDim
=
fields
[
0
]
->
GetCoordim
(
0
);
int
nCoeffs
=
fields
[
0
]
->
GetNcoeffs
();
int
nTracePts
=
fields
[
0
]
->
GetTrace
()
->
GetTotPoints
();
qdbase
[
j
]
=
viscTensor
[
j
][
i
];
}
fields
[
i
]
->
IProductWRTDerivBase
(
qdbase
,
tmp
);
// Evaulate <\phi, \hat{F}\cdot n> - outarray[i]
Vmath
::
Neg
(
nCoeffs
,
tmp
,
1
);
fields
[
i
]
->
AddTraceIntegral
(
flux
[
0
][
i
],
tmp
);
fields
[
i
]
->
SetPhysState
(
false
);
fields
[
i
]
->
MultiplyByElmtInvMass
(
tmp
,
tmp
);
fields
[
i
]
->
BwdTrans
(
tmp
,
outarray
[
i
]);
}
}
Array
<
OneD
,
NekDouble
>
tmp
(
nCoeffs
);
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
>
flux
(
nDim
);
for
(
int
j
=
0
;
j
<
nDim
;
++
j
)
{
flux
[
j
]
=
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
(
nConvectiveFields
);
for
(
int
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
flux
[
j
][
i
]
=
Array
<
OneD
,
NekDouble
>
(
nTracePts
,
0.0
);
}
}
void
DiffusionLDG
::
NumFluxforScalar
(
const
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
&
fields
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
ufield
,
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>>
&
uflux
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
pFwd
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
pBwd
)
{
std
::
size_t
nTracePts
=
fields
[
0
]
->
GetTrace
()
->
GetTotPoints
();
std
::
size_t
nvariables
=
fields
.
num_elements
();
std
::
size_t
nDim
=
fields
[
0
]
->
GetCoordim
(
0
);
Array
<
OneD
,
NekDouble
>
Fwd
{
nTracePts
};
Array
<
OneD
,
NekDouble
>
Bwd
{
nTracePts
};
Array
<
OneD
,
NekDouble
>
fluxtemp
{
nTracePts
,
0.0
};
// Get the sign of (v \cdot n), v = an arbitrary vector
// Evaluate upwind flux:
// uflux = \hat{u} \phi \cdot u = u^{(+,-)} n
for
(
std
::
size_t
i
=
0
;
i
<
nvariables
;
++
i
)
{
// Compute Fwd and Bwd value of ufield of i direction
if
(
pFwd
==
NullNekDoubleArrayofArray
||
pBwd
==
NullNekDoubleArrayofArray
)
{
fields
[
i
]
->
GetFwdBwdTracePhys
(
ufield
[
i
],
Fwd
,
Bwd
);
}
else
{
Fwd
=
pFwd
[
i
];
Bwd
=
pBwd
[
i
];
}
v_NumFluxforScalar
(
fields
,
inarray
,
flux
,
pFwd
,
pBwd
);
// Upwind
Vmath
::
Vcopy
(
nTracePts
,
Fwd
,
1
,
fluxtemp
,
1
);
for
(
int
j
=
0
;
j
<
nDim
;
++
j
)
{
for
(
int
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
fields
[
i
]
->
IProductWRTDerivBase
(
j
,
inarray
[
i
],
tmp
);
Vmath
::
Neg
(
nCoeffs
,
tmp
,
1
);
fields
[
i
]
->
AddTraceIntegral
(
flux
[
j
][
i
],
tmp
);
fields
[
i
]
->
SetPhysState
(
false
);
fields
[
i
]
->
MultiplyByElmtInvMass
(
tmp
,
tmp
);
fields
[
i
]
->
BwdTrans
(
tmp
,
inarrayderivative
[
j
][
i
]);
}
}
// Imposing weak boundary condition with flux
if
(
fields
[
0
]
->
GetBndCondExpansions
().
num_elements
())
{
ApplyScalarBCs
(
fields
,
i
,
ufield
[
i
],
Fwd
,
Bwd
,
fluxtemp
);
}
void
DiffusionLDG
::
v_DiffuseVolumeFlux
(
const
int
nConvectiveFields
,
const
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
&
fields
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
inarray
,
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
>
&
inarrayderivative
,
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
>
&
VolumeFlux
,
Array
<
OneD
,
int
>
&
nonZeroIndex
)
for
(
std
::
size_t
j
=
0
;
j
<
nDim
;
++
j
)
{
if
(
VolumeFlux
.
num_elements
())
{
int
nDim
=
inarrayderivative
.
num_elements
();
int
nPts
=
inarray
[
nConvectiveFields
-
1
].
num_elements
();
for
(
int
j
=
0
;
j
<
nDim
;
++
j
)
{
for
(
int
i
=
0
;
i
<
nConvectiveFields
;
++
i
)
{
Vmath
::
Vcopy
(
nPts
,
inarrayderivative
[
j
][
i
],
1
,
VolumeFlux
[
j
][
i
],
1
);
}
}
}
else
{
VolumeFlux
=
inarrayderivative
;
}
Vmath
::
Vmul
(
nTracePts
,
m_traceNormals
[
j
],
1
,
fluxtemp
,
1
,
uflux
[
j
][
i
],
1
);
}
}
}
void
DiffusionLDG
::
v_DiffuseTraceFlux
(
const
int
nConvectiveFields
,
const
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
&
fields
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
inarray
,
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
>
&
qfield
,
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
>
&
VolumeFlux
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
TraceFlux
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
pFwd
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
pBwd
,
Array
<
OneD
,
int
>
&
nonZeroIndex
)
void
DiffusionLDG
::
ApplyScalarBCs
(
const
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
&
fields
,
const
std
::
size_t
var
,
const
Array
<
OneD
,
const
NekDouble
>
&
ufield
,
const
Array
<
OneD
,
const
NekDouble
>
&
Fwd
,
const
Array
<
OneD
,
const
NekDouble
>
&
Bwd
,
Array
<
OneD
,
NekDouble
>
&
penaltyflux
)
{
boost
::
ignore_unused
(
ufield
,
Bwd
);
// Number of boundary regions
std
::
size_t
nBndRegions
=
fields
[
var
]
->
GetBndCondExpansions
().
num_elements
();
std
::
size_t
cnt
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
nBndRegions
;
++
i
)
{
if
(
fields
[
var
]
->
GetBndConditions
()[
i
]
->
GetBoundaryConditionType
()
==
SpatialDomains
::
ePeriodic
)
{
int
i
,
j
,
k
,
e
;
int
nBndEdgePts
;
int
nDim
=
qfield
.
num_elements
();
int
nPts
=
inarray
[
nConvectiveFields
-
1
].
num_elements
();
int
nTracePts
=
TraceFlux
[
nConvectiveFields
-
1
].
num_elements
();
// Compute u from q_{\eta} and q_{\xi}
// Obtain numerical fluxes
v_NumFluxforVector
(
fields
,
inarray
,
qfield
,
TraceFlux
);
if
(
m_ArtificialDiffusionVector
)
{
Array
<
OneD
,
NekDouble
>
muvar
(
nPts
,
0.0
);
m_ArtificialDiffusionVector
(
inarray
,
muvar
);
int
numConvFields
=
nConvectiveFields
;
if
(
m_shockCaptureType
==
"Smooth"
)
{
numConvFields
=
nConvectiveFields
-
1
;
}
for
(
j
=
0
;
j
<
nDim
;
++
j
)
{
for
(
i
=
0
;
i
<
numConvFields
;
++
i
)
{
Vmath
::
Vmul
(
nPts
,
VolumeFlux
[
j
][
i
],
1
,
muvar
,
1
,
VolumeFlux
[
j
][
i
],
1
);
}
}
Array
<
OneD
,
NekDouble
>
FwdMuVar
(
nTracePts
,
0.0
);
Array
<
OneD
,
NekDouble
>
BwdMuVar
(
nTracePts
,
0.0
);
fields
[
0
]
->
GetFwdBwdTracePhys
(
muvar
,
FwdMuVar
,
BwdMuVar
);
int
nBndRegions
=
fields
[
0
]
->
GetBndCondExpansions
().
num_elements
();
int
cnt
=
0
;
for
(
i
=
0
;
i
<
nBndRegions
;
++
i
)
{
if
(
fields
[
0
]
->
GetBndConditions
()[
i
]
->
GetBoundaryConditionType
()
==
SpatialDomains
::
ePeriodic
)
{
continue
;
}
// Number of boundary expansion related to that region
int
nBndEdges
=
fields
[
0
]
->
GetBndCondExpansions
()[
i
]
->
GetExpSize
();
// Weakly impose boundary conditions by modifying flux
// values
for
(
e
=
0
;
e
<
nBndEdges
;
++
e
)
{
nBndEdgePts
=
fields
[
0
]
->
GetBndCondExpansions
()[
i
]
->
GetExp
(
e
)
->
GetTotPoints
();
int
id2
=
fields
[
0
]
->
GetTrace
()
->
GetPhys_Offset
(
fields
[
0
]
->
GetTraceMap
()
->
GetBndCondTraceToGlobalTraceMap
(
cnt
++
));
for
(
k
=
0
;
k
<
nBndEdgePts
;
++
k
)
{
BwdMuVar
[
id2
+
k
]
=
0.0
;
}
}
}
for
(
i
=
0
;
i
<
numConvFields
;
++
i
)
{
for
(
k
=
0
;
k
<
nTracePts
;
++
k
)
{
TraceFlux
[
i
][
k
]
=
0.5
*
(
FwdMuVar
[
k
]
+
BwdMuVar
[
k
])
*
TraceFlux
[
i
][
k
];
}
}
}
continue
;
}
void
DiffusionLDG
::
v_NumFluxforScalar
(
const
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
&
fields
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
ufield
,
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
>
&
uflux
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
pFwd
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>
>
&
pBwd
)
// Number of boundary expansion related to that region
std
::
size_t
nBndEdges
=
fields
[
var
]
->
GetBndCondExpansions
()[
i
]
->
GetExpSize
();
// Weakly impose boundary conditions by modifying flux values
for
(
std
::
size_t
e
=
0
;
e
<
nBndEdges
;
++
e
)
{
int
i
,
j
;
int
nTracePts
=
fields
[
0
]
->
GetTrace
()
->
GetTotPoints
();
int
nvariables
=
fields
.
num_elements
();
int
nDim
=
fields
[
0
]
->
GetCoordim
(
0
);;
Array
<
OneD
,
NekDouble
>
Fwd
(
nTracePts
);
Array
<
OneD
,
NekDouble
>
Bwd
(
nTracePts
);
Array
<
OneD
,
NekDouble
>
Vn
(
nTracePts
,
0.0
);
Array
<
OneD
,
NekDouble
>
fluxtemp
(
nTracePts
,
0.0
);
// Get the normal velocity Vn
for
(
i
=
0
;
i
<
nDim
;
++
i
)
std
::
size_t
nBndEdgePts
=
fields
[
var
]
->
GetBndCondExpansions
()[
i
]
->
GetExp
(
e
)
->
GetTotPoints
();
std
::
size_t
id1
=
fields
[
var
]
->
GetBndCondExpansions
()[
i
]
->
GetPhys_Offset
(
e
);
std
::
size_t
id2
=
fields
[
0
]
->
GetTrace
()
->
GetPhys_Offset
(
fields
[
0
]
->
GetTraceMap
()
->
GetBndCondTraceToGlobalTraceMap
(
cnt
++
));
// AV boundary conditions
if
(
boost
::
iequals
(
fields
[
var
]
->
GetBndConditions
()[
i
]
->
GetUserDefined
(),
"Wall"
)
||
boost
::
iequals
(
fields
[
var
]
->
GetBndConditions
()[
i
]
->
GetUserDefined
(),
"Symmetry"
)
||
boost
::
iequals
(
fields
[
var
]
->
GetBndConditions
()[
i
]
->
GetUserDefined
(),
"WallViscous"
)
||
boost
::
iequals
(
fields
[
var
]
->
GetBndConditions
()[
i
]
->
GetUserDefined
(),
"WallAdiabatic"
))
{
Vmath
::
Svtvp
(
nTracePts
,
1.0
,
m_traceNormals
[
i
],
1
,
Vn
,
1
,
Vn
,
1
);
Vmath
::
Vcopy
(
nBndEdgePts
,
&
Fwd
[
id2
],
1
,
&
penaltyflux
[
id2
],
1
);
}
// Get the sign of (v \cdot n), v = an arbitrary vector
// Evaluate upwind flux:
// uflux = \hat{u} \phi \cdot u = u^{(+,-)} n
for
(
i
=
0
;
i
<
nvariables
;
++
i
)
// For Dirichlet boundary condition: uflux = g_D
else
if
(
fields
[
var
]
->
GetBndConditions
()[
i
]
->
GetBoundaryConditionType
()
==
SpatialDomains
::
eDirichlet
)
{
// Compute Fwd and Bwd value of ufield of i direction
if
(
pFwd
==
NullNekDoubleArrayofArray
||
pBwd
==
NullNekDoubleArrayofArray
)
{
fields
[
i
]
->
GetFwdBwdTracePhys
(
ufield
[
i
],
Fwd
,
Bwd
);
}
else
{
Fwd
=
pFwd
[
i
];
Bwd
=
pBwd
[
i
];
}
// if Vn >= 0, flux = uFwd, i.e.,
// edge::eForward, if V*n>=0 <=> V*n_F>=0, pick uflux = uFwd
// edge::eBackward, if V*n>=0 <=> V*n_B<0, pick uflux = uFwd
// else if Vn < 0, flux = uBwd, i.e.,
// edge::eForward, if V*n<0 <=> V*n_F<0, pick uflux = uBwd
// edge::eBackward, if V*n<0 <=> V*n_B>=0, pick uflux = uBwd
fields
[
i
]
->
GetTrace
()
->
Upwind
(
/*m_traceNormals[j]*/
Vn
,
Fwd
,
Bwd
,
fluxtemp
);
// Imposing weak boundary condition with flux
// if Vn >= 0, uflux = uBwd at Neumann, i.e.,
// edge::eForward, if V*n>=0 <=> V*n_F>=0, pick uflux = uBwd
// edge::eBackward, if V*n>=0 <=> V*n_B<0, pick uflux = uBwd
// if Vn >= 0, uflux = uFwd at Neumann, i.e.,
// edge::eForward, if V*n<0 <=> V*n_F<0, pick uflux = uFwd
// edge::eBackward, if V*n<0 <=> V*n_B>=0, pick uflux = uFwd
Array
<
OneD
,
NekDouble
>
uplus
(
nTracePts
);
fields
[
i
]
->
ExtractTracePhys
(
ufield
[
i
],
uplus
);
if
(
fields
[
0
]
->
GetBndCondExpansions
().
num_elements
())
{
v_WeakPenaltyforScalar
(
fields
,
i
,
ufield
[
i
],
uplus
,
fluxtemp
);
}
for
(
j
=
0
;
j
<
nDim
;
++
j
)
{
// if Vn >= 0, flux = uFwd*(tan_{\xi}^- \cdot \vec{n}),
// i.e,
// edge::eForward, uFwd \(\tan_{\xi}^Fwd \cdot \vec{n})
// edge::eBackward, uFwd \(\tan_{\xi}^Bwd \cdot \vec{n})
// else if Vn < 0, flux = uBwd*(tan_{\xi}^- \cdot \vec{n}),
// i.e,
// edge::eForward, uBwd \(\tan_{\xi}^Fwd \cdot \vec{n})
// edge::eBackward, uBwd \(\tan_{\xi}^Bwd \cdot \vec{n})
Vmath
::
Vmul
(
nTracePts
,
m_traceNormals
[
j
],
1
,
fluxtemp
,
1
,
uflux
[
j
][
i
],
1
);
}
Vmath
::
Vcopy
(
nBndEdgePts
,
&
(
fields
[
var
]
->
GetBndCondExpansions
()[
i
]
->
GetPhys
())[
id1
],
1
,
&
penaltyflux
[
id2
],
1
);
}
// For Neumann boundary condition: uflux = u+
else
if
((
fields
[
var
]
->
GetBndConditions
()[
i
])
->
GetBoundaryConditionType
()
==
SpatialDomains
::
eNeumann
)
{
Vmath
::
Vcopy
(
nBndEdgePts
,
&
Fwd
[
id2
],
1
,
&
penaltyflux
[
id2
],
1
);
}
}
}
}
/**
* @brief Build the numerical flux for the 2nd order derivatives
* todo: add variable coeff and h dependence to penalty term
*/
void
DiffusionLDG
::
NumFluxforVector
(
const
Array
<
OneD
,
MultiRegions
::
ExpListSharedPtr
>
&
fields
,
const
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
ufield
,
Array
<
OneD
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>>
&
qfield
,
Array
<
OneD
,
Array
<
OneD
,
NekDouble
>>
&
qflux
)
{
std
::
size_t
nTracePts
=
fields
[
0
]
->
GetTrace
()
->
GetTotPoints
();
std
::
size_t
nvariables
=
fields
.
num_elements
();
std
::
size_t
nDim
=
qfield
.
num_elements
();
Array
<
OneD
,
NekDouble
>
Fwd
{
nTracePts
};
Array
<
OneD
,
NekDouble
>
Bwd
{
nTracePts
};
Array
<
OneD
,
NekDouble
>
qFwd
{
nTracePts
};
Array
<
OneD
,
NekDouble
>
qBwd
{
nTracePts
};
Array
<
OneD
,
NekDouble
>
qfluxtemp
{
nTracePts
,
0.0
};
Array
<
OneD
,
NekDouble
>
uterm
{
nTracePts
};
// Evaulate upwind flux:
// qflux = \hat{q} \cdot u = q \cdot n - C_(11)*(u^+ - u^-)
for
(
std
::
size_t
i
=
0
;
i
<
nvariables
;
++
i
)
{