Commit 4da6b4c2 authored by Dave Moxey's avatar Dave Moxey

Merge branch 'feature/CFS-NSAxisym' into 'master'

CFS: axi-symmetric Navier-Stokes

See merge request !866
parents 01ab613d b8bc476c
......@@ -90,7 +90,7 @@ v5.0.0
**CompressibleFlowSolver**
- Add 3D regression tests (!567)
- Introduce forcing for quasi-1D Euler simulations (!771)
- Allow performing axi-symmetric Euler simulations (!771)
- Allow performing axi-symmetric Euler and NS simulations (!771, !866)
- Add ability to use an exponential filtering for stabilization with
seg, quad and hex elements (!771, !862)
- Introduce equations of state to account for real gas effects (!880)
......
......@@ -315,7 +315,7 @@ class IProductWRTDerivBase_IterPerExp : public Operator
{
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_dim = PtsKey.size();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
int nqtot = m_stdExp->GetTotPoints();
......@@ -602,7 +602,7 @@ class IProductWRTDerivBase_SumFac_Quad : public Operator
{
Vmath::Vmul (ntot,m_derivFac[i],1, in[0],1,
tmp[i],1);
for(int j = 1; j < m_coordim; ++j)
for(int j = 1; j < 2; ++j)
{
Vmath::Vvtvp (ntot,m_derivFac[i +j*2],1,
in[j],1, tmp[i], 1, tmp[i],1);
......@@ -667,7 +667,7 @@ class IProductWRTDerivBase_SumFac_Quad : public Operator
m_derbase1(m_stdExp->GetBasis(1)->GetDbdata())
{
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
m_derivFac = pGeomData->GetDerivFactors(pCollExp);
m_jac = pGeomData->GetJacWithStdWeights(pCollExp);
......@@ -753,7 +753,7 @@ class IProductWRTDerivBase_SumFac_Tri : public Operator
{
Vmath::Vmul (ntot,m_derivFac[i],1, in[0],1, tmp[i],1);
for(int j = 1; j < m_coordim; ++j)
for(int j = 1; j < 2; ++j)
{
Vmath::Vvtvp (ntot,m_derivFac[i +j*2],1,
in[j],1, tmp[i], 1, tmp[i],1);
......@@ -829,7 +829,7 @@ class IProductWRTDerivBase_SumFac_Tri : public Operator
m_derbase1(m_stdExp->GetBasis(1)->GetDbdata())
{
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
m_derivFac = pGeomData->GetDerivFactors(pCollExp);
m_jac = pGeomData->GetJacWithStdWeights(pCollExp);
......
......@@ -156,7 +156,7 @@ class PhysDeriv_StdMat : public Operator
int nqtot = 1;
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_dim = PtsKey.size();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
for(int i = 0; i < m_dim; ++i)
{
......@@ -326,7 +326,7 @@ class PhysDeriv_IterPerExp : public Operator
int nqtot = 1;
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_dim = PtsKey.size();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
for(int i = 0; i < m_dim; ++i)
{
......@@ -582,7 +582,7 @@ class PhysDeriv_SumFac_Seg : public Operator
m_nquad0 (m_stdExp->GetNumPoints(0))
{
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
m_derivFac = pGeomData->GetDerivFactors(pCollExp);
......@@ -712,7 +712,7 @@ class PhysDeriv_SumFac_Quad : public Operator
m_nquad1 (m_stdExp->GetNumPoints(1))
{
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
m_derivFac = pGeomData->GetDerivFactors(pCollExp);
......@@ -864,7 +864,7 @@ class PhysDeriv_SumFac_Tri : public Operator
m_nquad1 (m_stdExp->GetNumPoints(1))
{
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
m_derivFac = pGeomData->GetDerivFactors(pCollExp);
......@@ -1046,7 +1046,7 @@ class PhysDeriv_SumFac_Hex : public Operator
{
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
m_derivFac = pGeomData->GetDerivFactors(pCollExp);
......@@ -1274,7 +1274,7 @@ class PhysDeriv_SumFac_Tet : public Operator
{
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
m_derivFac = pGeomData->GetDerivFactors(pCollExp);
......@@ -1488,7 +1488,7 @@ class PhysDeriv_SumFac_Prism : public Operator
{
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
m_derivFac = pGeomData->GetDerivFactors(pCollExp);
......@@ -1705,7 +1705,7 @@ class PhysDeriv_SumFac_Pyr : public Operator
{
LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
m_coordim = m_stdExp->GetCoordim();
m_coordim = pCollExp[0]->GetCoordim();
m_derivFac = pGeomData->GetDerivFactors(pCollExp);
......
......@@ -32,6 +32,7 @@ IF( NEKTAR_SOLVER_COMPRESSIBLE_FLOW )
./EquationSystems/EulerCFE.cpp
./EquationSystems/IsentropicVortex.cpp
./EquationSystems/NavierStokesCFE.cpp
./EquationSystems/NavierStokesCFEAxisym.cpp
./EquationSystems/RinglebFlow.cpp
./Filters/FilterEnergy.cpp
./Forcing/ForcingAxiSymmetric.cpp
......@@ -104,6 +105,7 @@ IF( NEKTAR_SOLVER_COMPRESSIBLE_FLOW )
ADD_NEKTAR_TEST(Nozzle_AxiSym_NoSwirl)
ADD_NEKTAR_TEST(Nozzle_AxiSym_Swirl)
ADD_NEKTAR_TEST(Nozzle_Quasi1D_P6)
ADD_NEKTAR_TEST(PipeFlow_NSAxisym)
ADD_NEKTAR_TEST(hump3D_GLL)
ADD_NEKTAR_TEST(hump3D_SEM)
ADD_NEKTAR_TEST(Rarefaction_vanderWaals LENGTHY)
......
......@@ -337,23 +337,63 @@ namespace Nektar
GetPhys_Offset(fields[0]->GetTraceMap()->
GetBndCondTraceToGlobalTraceMap(cnt++));
// Reinforcing bcs for velocity in case of Wall bcs
if (boost::iequals(fields[i]->GetBndConditions()[j]->
GetUserDefined(),"WallViscous") ||
boost::iequals(fields[i]->GetBndConditions()[j]->
GetUserDefined(),"WallAdiabatic"))
{
// Reinforcing bcs for velocity in case of Wall bcs
Vmath::Zero(nBndEdgePts,
&scalarVariables[i][id2], 1);
}
// Imposing velocity bcs if not Wall
else if (
boost::iequals(fields[i]->GetBndConditions()[j]->
GetUserDefined(),"Wall") ||
boost::iequals(fields[i]->GetBndConditions()[j]->
GetUserDefined(),"Symmetry"))
{
// Symmetry bc: normal velocity is zero
// get all velocities at once because we need u.n
if (i==0)
{
// tmp1 = -(u.n)
Vmath::Zero(nBndEdgePts, tmp1, 1);
for (int k = 0; k < nScalars-1; ++k)
{
Vmath::Vdiv(nBndEdgePts,
&(fields[k+1]->GetBndCondExpansions()[j]->
UpdatePhys())[id1], 1,
&(fields[0]->GetBndCondExpansions()[j]->
UpdatePhys())[id1], 1,
&scalarVariables[k][id2], 1);
Vmath::Vvtvp(nBndEdgePts,
&m_traceNormals[k][id2], 1,
&scalarVariables[k][id2], 1,
&tmp1[0], 1,
&tmp1[0], 1);
}
Vmath::Smul(nBndEdgePts, -1.0,
&tmp1[0], 1,
&tmp1[0], 1);
// u_i - (u.n)n_i
for (int k = 0; k < nScalars-1; ++k)
{
Vmath::Vvtvp(nBndEdgePts,
&tmp1[0], 1,
&m_traceNormals[k][id2], 1,
&scalarVariables[k][id2], 1,
&scalarVariables[k][id2], 1);
}
}
}
else if (fields[i]->GetBndConditions()[j]->
GetBoundaryConditionType() ==
SpatialDomains::eDirichlet)
{
Vmath::Vdiv(nBndEdgePts,
// Imposing velocity bcs if not Wall
Vmath::Vdiv(nBndEdgePts,
&(fields[i+1]->GetBndCondExpansions()[j]->
UpdatePhys())[id1], 1,
&(fields[0]->GetBndCondExpansions()[j]->
......
......@@ -98,13 +98,13 @@ namespace Nektar
if (m_specHP_dealiasing)
{
m_diffusion->SetFluxVectorNS(
&NavierStokesCFE::GetViscousFluxVectorDeAlias,
&NavierStokesCFE::v_GetViscousFluxVectorDeAlias,
this);
}
else
{
m_diffusion->SetFluxVectorNS(&NavierStokesCFE::
GetViscousFluxVector, this);
v_GetViscousFluxVector, this);
}
// Concluding initialisation of diffusion operator
......@@ -186,7 +186,7 @@ namespace Nektar
* @brief Return the flux vector for the LDG diffusion problem.
* \todo Complete the viscous flux vector
*/
void NavierStokesCFE::GetViscousFluxVector(
void NavierStokesCFE::v_GetViscousFluxVector(
const Array<OneD, Array<OneD, NekDouble> > &physfield,
Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &derivativesO1,
Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &viscousTensor)
......@@ -287,7 +287,7 @@ namespace Nektar
* @brief Return the flux vector for the LDG diffusion problem.
* \todo Complete the viscous flux vector
*/
void NavierStokesCFE::GetViscousFluxVectorDeAlias(
void NavierStokesCFE::v_GetViscousFluxVectorDeAlias(
const Array<OneD, Array<OneD, NekDouble> > &physfield,
Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &derivativesO1,
Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &viscousTensor)
......
......@@ -82,11 +82,11 @@ namespace Nektar
const Array<OneD, Array<OneD, NekDouble> > &pFwd,
const Array<OneD, Array<OneD, NekDouble> > &pBwd);
void GetViscousFluxVector(
virtual void v_GetViscousFluxVector(
const Array<OneD, Array<OneD, NekDouble> > &physfield,
Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &derivatives,
Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &viscousTensor);
void GetViscousFluxVectorDeAlias(
virtual void v_GetViscousFluxVectorDeAlias(
const Array<OneD, Array<OneD, NekDouble> > &physfield,
Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &derivatives,
Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &viscousTensor);
......
///////////////////////////////////////////////////////////////////////////////
//
// File NavierStokesCFEAxisym.cpp
//
// For more information, please see: http://www.nektar.info
//
// The MIT License
//
// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
// Department of Aeronautics, Imperial College London (UK), and Scientific
// Computing and Imaging Institute, University of Utah (USA).
//
// License for the specific language governing rights and limitations under
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
// Description: Navier Stokes equations in conservative variables
//
///////////////////////////////////////////////////////////////////////////////
#include <CompressibleFlowSolver/EquationSystems/NavierStokesCFEAxisym.h>
using namespace std;
namespace Nektar
{
string NavierStokesCFEAxisym::className =
SolverUtils::GetEquationSystemFactory().RegisterCreatorFunction(
"NavierStokesCFEAxisym", NavierStokesCFEAxisym::create,
"Axisymmetric NavierStokes equations in conservative variables.");
NavierStokesCFEAxisym::NavierStokesCFEAxisym(
const LibUtilities::SessionReaderSharedPtr& pSession,
const SpatialDomains::MeshGraphSharedPtr& pGraph)
: UnsteadySystem(pSession, pGraph),
NavierStokesCFE(pSession, pGraph)
{
}
NavierStokesCFEAxisym::~NavierStokesCFEAxisym()
{
}
void NavierStokesCFEAxisym::v_InitObject()
{
NavierStokesCFE::v_InitObject();
int nVariables = m_fields.num_elements();
int npoints = GetNpoints();
m_viscousForcing = Array<OneD, Array<OneD, NekDouble>> (nVariables);
for (int i = 0; i < nVariables; ++i)
{
m_viscousForcing[i] = Array<OneD, NekDouble>(npoints, 0.0);
}
}
void NavierStokesCFEAxisym::v_DoDiffusion(
const Array<OneD, const Array<OneD, NekDouble> > &inarray,
Array<OneD, Array<OneD, NekDouble> > &outarray,
const Array<OneD, Array<OneD, NekDouble> > &pFwd,
const Array<OneD, Array<OneD, NekDouble> > &pBwd)
{
int npoints = GetNpoints();
int nvariables = inarray.num_elements();
NavierStokesCFE::v_DoDiffusion(inarray, outarray, pFwd, pBwd);
for (int i = 0; i < nvariables; ++i)
{
Vmath::Vadd(npoints,
m_viscousForcing[i], 1,
outarray[i], 1,
outarray[i], 1);
}
}
/**
* @brief Return the flux vector for the LDG diffusion problem.
* \todo Complete the viscous flux vector
*/
void NavierStokesCFEAxisym::v_GetViscousFluxVector(
const Array<OneD, Array<OneD, NekDouble> > &physfield,
Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &derivativesO1,
Array<OneD, Array<OneD, Array<OneD, NekDouble> > > &viscousTensor)
{
int i, j;
int nVariables = m_fields.num_elements();
int nPts = physfield[0].num_elements();
// 1/r
Array<OneD, Array<OneD, NekDouble> > coords(3);
Array<OneD, NekDouble> invR (nPts,0.0);
for (int i = 0; i < 3; i++)
{
coords[i] = Array<OneD, NekDouble> (nPts);
}
m_fields[0]->GetCoords(coords[0], coords[1], coords[2]);
for (int i = 0; i < nPts; ++i)
{
if (coords[0][i] < NekConstants::kNekZeroTol)
{
invR[i] = 0;
}
else
{
invR[i] = 1.0/coords[0][i];
}
}
// Stokes hypothesis
const NekDouble lambda = -2.0/3.0;
// Auxiliary variables
Array<OneD, NekDouble > mu (nPts, 0.0);
Array<OneD, NekDouble > thermalConductivity(nPts, 0.0);
Array<OneD, NekDouble > divVel (nPts, 0.0);
Array<OneD, NekDouble > tmp (nPts, 0.0);
// Variable viscosity through the Sutherland's law
if (m_ViscosityType == "Variable")
{
m_varConv->GetDynamicViscosity(physfield[nVariables-2], mu);
NekDouble tRa = m_Cp / m_Prandtl;
Vmath::Smul(nPts, tRa, mu, 1, thermalConductivity, 1);
}
else
{
Vmath::Fill(nPts, m_mu, mu, 1);
Vmath::Fill(nPts, m_thermalConductivity,
thermalConductivity, 1);
}
// Velocity divergence = d(u_r)/dr + d(u_z)/dz + u_r/r
Vmath::Vadd(nPts, derivativesO1[0][0], 1, derivativesO1[1][1], 1,
divVel, 1);
Vmath::Vvtvp(nPts, physfield[0], 1 , invR, 1, divVel, 1, divVel, 1);
// Velocity divergence scaled by lambda * mu
Vmath::Smul(nPts, lambda, divVel, 1, divVel, 1);
Vmath::Vmul(nPts, mu, 1, divVel, 1, divVel, 1);
// Viscous flux vector for the rho equation = 0
for (i = 0; i < m_spacedim; ++i)
{
Vmath::Zero(nPts, viscousTensor[i][0], 1);
}
// Viscous stress tensor (for the momentum equations)
for (i = 0; i < 2; ++i)
{
for (j = i; j < 2; ++j)
{
Vmath::Vadd(nPts, derivativesO1[i][j], 1,
derivativesO1[j][i], 1,
viscousTensor[i][j+1], 1);
Vmath::Vmul(nPts, mu, 1,
viscousTensor[i][j+1], 1,
viscousTensor[i][j+1], 1);
if (i == j)
{
// Add divergence term to diagonal
Vmath::Vadd(nPts, viscousTensor[i][j+1], 1,
divVel, 1,
viscousTensor[i][j+1], 1);
}
else
{
// Copy to make symmetric
Vmath::Vcopy(nPts, viscousTensor[i][j+1], 1,
viscousTensor[j][i+1], 1);
}
}
}
// Swirl case
if(m_spacedim == 3)
{
// Tau_theta_theta = mu ( 2*u_r/r - 2/3*div(u))
Vmath::Vmul(nPts, physfield[0], 1 , invR, 1,
viscousTensor[2][3], 1);
Vmath::Smul(nPts, 2.0, viscousTensor[2][3], 1,
viscousTensor[2][3], 1);
Vmath::Vmul(nPts, mu, 1, viscousTensor[2][3], 1,
viscousTensor[2][3], 1);
Vmath::Vadd(nPts, viscousTensor[2][3], 1,
divVel, 1,
viscousTensor[2][3], 1);
// Tau_r_theta = mu (-u_theta/r + d(u_theta)/dr )
Vmath::Vmul(nPts, physfield[2], 1 , invR, 1,
viscousTensor[2][1], 1);
Vmath::Smul(nPts, -1.0, viscousTensor[2][1], 1,
viscousTensor[2][1], 1);
Vmath::Vadd(nPts, derivativesO1[0][2], 1 , viscousTensor[2][1], 1,
viscousTensor[2][1], 1);
Vmath::Vmul(nPts, mu, 1, viscousTensor[2][1], 1,
viscousTensor[2][1], 1);
Vmath::Vcopy(nPts, viscousTensor[2][1], 1,
viscousTensor[0][3], 1);
// Tau_z_theta = mu (d(u_theta)/dz )
Vmath::Vmul(nPts, mu, 1, derivativesO1[1][2], 1,
viscousTensor[2][2], 1);
Vmath::Vcopy(nPts, viscousTensor[2][2], 1,
viscousTensor[1][3], 1);
}
// Terms for the energy equation
for (i = 0; i < m_spacedim; ++i)
{
Vmath::Zero(nPts, viscousTensor[i][m_spacedim+1], 1);
// u_j * tau_ij
for (j = 0; j < m_spacedim; ++j)
{
Vmath::Vvtvp(nPts, physfield[j], 1,
viscousTensor[i][j+1], 1,
viscousTensor[i][m_spacedim+1], 1,
viscousTensor[i][m_spacedim+1], 1);
}
// Add k*T_i
if (i != 2)
{
Vmath::Vvtvp(nPts, thermalConductivity, 1,
derivativesO1[i][m_spacedim], 1,
viscousTensor[i][m_spacedim+1], 1,
viscousTensor[i][m_spacedim+1], 1);
}
else
{
Vmath::Vmul(nPts, derivativesO1[i][m_spacedim], 1 ,
invR, 1, tmp, 1);
Vmath::Vvtvp(nPts, thermalConductivity, 1,
tmp, 1,
viscousTensor[i][m_spacedim+1], 1,
viscousTensor[i][m_spacedim+1], 1);
}
}
// Update viscous forcing
// r-momentum: F = 1/r * (tau_rr - tau_theta_theta)
if(m_spacedim == 3)
{
Vmath::Vsub(nPts, viscousTensor[0][1], 1, viscousTensor[2][3], 1,
m_viscousForcing[1], 1);
Vmath::Vmul(nPts, m_viscousForcing[1], 1 ,
invR, 1, m_viscousForcing[1], 1);
}
else
{
Vmath::Vmul(nPts, viscousTensor[0][1], 1 ,
invR, 1, m_viscousForcing[1], 1);
}
// z-momentum: F = 1/r * tau_r_z
Vmath::Vmul(nPts, viscousTensor[0][2], 1 ,
invR, 1, m_viscousForcing[2], 1);
// Theta_momentum: F = 2* tau_r_theta
if(m_spacedim == 3)
{
Vmath::Vmul(nPts, viscousTensor[0][3], 1 ,
invR, 1, m_viscousForcing[3], 1);
Vmath::Smul(nPts, 2.0, m_viscousForcing[3], 1,
m_viscousForcing[3], 1);
}
// Energy: F = 1/r* viscousTensor_T_r
Vmath::Vmul(nPts, viscousTensor[0][m_spacedim+1], 1 ,
invR, 1, m_viscousForcing[m_spacedim+1], 1);
}
}
///////////////////////////////////////////////////////////////////////////////
//
// File NavierStokesCFEAxisym.h
//
// For more information, please see: http://www.nektar.info
//
// The MIT License
//
// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
// Department of Aeronautics, Imperial College London (UK), and Scientific
// Computing and Imaging Institute, University of Utah (USA).
//
// License for the specific language governing rights and limitations under
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
// Description: NavierStokes equations in conservative variable
//
///////////////////////////////////////////////////////////////////////////////
#ifndef NEKTAR_SOLVERS_COMPRESSIBLEFLOWSOLVER_EQUATIONSYSTEMS_NSCFEAXISYM_H
#define NEKTAR_SOLVERS_COMPRESSIBLEFLOWSOLVER_EQUATIONSYSTEMS_NSCFEAXISYM_H
#include <CompressibleFlowSolver/EquationSystems/NavierStokesCFE.h>
namespace Nektar
{
/**
*