Commit c75ea8e8 by Kilian Lackhove

### APE: adjust userguide to formulation change

parent b439d56b
 ... ... @@ -14,16 +14,16 @@ irrotational acoustic perturbations, in this case perturbations are assumed to be exclusively of acoustic nature. \begin{subequations} \begin{align*} \frac{\partial p'}{\partial t} + \overline{c}^2 \frac{\partial \overline{\rho} u'_i}{\partial x_i} + \overline{c}^2 \frac{\partial \overline{u}_i p' / \overline{c}^2}{\partial x_i} &= \overline{c}^2 q_c \\ \frac{\partial u'_i}{\partial t} + \frac{\partial \overline{u}_j u'_j}{\partial x_i} + \frac{\partial p' / \overline{\rho}}{\partial x_i} &= 0 \end{align*} \frac{\partial p'}{\partial t} + \frac{\partial \gamma \overline{p} u'_i}{\partial x_i} + \frac{\partial \overline{u}_i p'}{\partial x_i} &= \overline{c}^2 q_c \\ \frac{\partial u'_i}{\partial t} + \frac{\partial \overline{u}_j u'_j}{\partial x_i} + \frac{\partial p' / \overline{\rho}}{\partial x_i} &= U_i \end{align*} \end{subequations} where $(\overline{u}_i,\overline{p}, \overline{\rho}, \overline{c}^2 = \gamma \overline{p} / \overline{\rho} )$ represents the base flow and $(u'_i,p')$ the perturbations. $\overline{c}^2 q_c$ is the acoustic source term. ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!