/////////////////////////////////////////////////////////////////////////////// // // File: StandardExtrapolate.cpp // // For more information, please see: http://www.nektar.info // // The MIT License // // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA), // Department of Aeronautics, Imperial College London (UK), and Scientific // Computing and Imaging Institute, University of Utah (USA). // // License for the specific language governing rights and limitations under // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. // // Description: Abstract base class for StandardExtrapolate. // /////////////////////////////////////////////////////////////////////////////// #include #include namespace Nektar { /** * Registers the class with the Factory. */ std::string StandardExtrapolate::className = GetExtrapolateFactory().RegisterCreatorFunction( "Standard", StandardExtrapolate::create, "Standard"); StandardExtrapolate::StandardExtrapolate( const LibUtilities::SessionReaderSharedPtr pSession, Array pFields, MultiRegions::ExpListSharedPtr pPressure, const Array pVel, const SolverUtils::AdvectionSharedPtr advObject) : Extrapolate(pSession,pFields,pPressure,pVel,advObject) { } StandardExtrapolate::~StandardExtrapolate() { } /** * Function to extrapolate the new pressure boundary condition. * Based on the velocity field and on the advection term. * Acceleration term is also computed. * This routine is a general one for 2d and 3D application and it can be called * directly from velocity correction scheme. Specialisation on dimensionality is * redirected to the CalcNeumannPressureBCs method. */ void StandardExtrapolate::v_EvaluatePressureBCs( const Array > &fields, const Array > &N, NekDouble kinvis) { m_pressureCalls++; if(m_HBCdata.num_elements()>0) { // Rotate HOPBCs storage RollOver(m_pressureHBCs); // Calculate non-linear and viscous BCs at current level // and put in m_pressureHBCs[0] CalcNeumannPressureBCs(fields,N,kinvis); // calculate (phi,du/dt) and level n which will then be // extrpolated. CalcExplicitDuDt(fields); // Extrapolate to m_pressureHBCs to n+1 ExtrapolatePressureHBCs(); // Copy m_pressureHBCs to m_PbndExp CopyPressureHBCsToPbndExp(); // Evaluate High order outflow conditiosn if required. CalcOutflowBCs(fields, kinvis); } } /** * */ void StandardExtrapolate::v_SubSteppingTimeIntegration( int intMethod, const LibUtilities::TimeIntegrationWrapperSharedPtr &IntegrationScheme) { switch(intMethod) { case LibUtilities::eIMEXOrder1: { m_intSteps = 1; } break; case LibUtilities::eIMEXOrder2: { m_intSteps = 2; } break; case LibUtilities::eIMEXOrder3: { m_intSteps = 3; } break; } } /** * */ void StandardExtrapolate::v_SubStepSetPressureBCs( const Array > &inarray, NekDouble Aii_DT, NekDouble kinvis) { } /** * */ void StandardExtrapolate::v_SubStepAdvance( const LibUtilities::TimeIntegrationSolutionSharedPtr &integrationSoln, int nstep, NekDouble time) { } /** * */ void StandardExtrapolate::v_SubStepSaveFields( int nstep) { } /** * */ void StandardExtrapolate::v_MountHOPBCs( int HBCdata, NekDouble kinvis, Array &Q, Array &Advection) { Vmath::Svtvp(HBCdata,-kinvis,Q,1,Advection,1,Q,1); } }