
Tutorial exercises
“A hands-on approach to implementing and using spectral/hp elements”

Spencer Sherwin, Mike Kirby, Peter Vos

Tutorial 1

1 Integration on a one-dimensional standard region

Assignment (a): Integrate the function f(ξ) = ξ12 on the standard segment ξ = [−1, 1] using
Gaussian quadrature.
As explained in section 1.4.1 of the Course Notes , the Gaussian quadrature technique requires
the quadrature weights wi and zeros ξi in the standard interval ξ = [−1, 1]. Both the weights and
zeros have already been calculated using the PointsManager of the Nektar++ library. Implement
the Gaussian quadrature rule by completing the code in the following way:

1. Write a loop to numerically evaluate the integral
∫ 1

−1
f(ξ)d(ξ) using 4th order Gauss-

Lobatto-Legendre quadrature.

2. Now evaluate the integral for a quadrature order of Q = Qmax where Qmax is the number
of quadrature points required for an exact evaluation of the integral (calculate this value
analytically). Verify that the error is zero (up to numerical precision).

Assignment (b): Calculate the integral
∫ 1

−1
cos(ξ)d(ξ) using Gaussian quadrature for 2 ≤ Q ≤ 8.

Based on the implementation of the previous exercise, write your own piece of code which

evaluates the integral
∫ 1

−1
cos(ξ)d(ξ) and displays the error ε for the range 2 ≤ Q ≤ 8. As we

are essentially approximating the smooth function cos(ξ) with polynomials of order Q− 1 when
using Gaussian quadrature, the error ε should be proportional to ε ∝ CQ. Therefore, the error
should drop one order of magnitude with increasing Q. Verify that this is the case.

2 Differentiation on a one-dimensional standard region

Assignment (a): Numerically evaluate the derivative of the function f(ξ) = ξ7 on the standard
segment ξ = [−1, 1].
As outlined in Section 1.4.2 of the Course Notes , numerical differentiation implies the use of
a differentiation matrix. Similar as for the quadrature points, the differentiation matrix can be
obtained through the PointsManager of the Nektar++ library. This has already been done for
you. Write your own piece of code which implements the numerical differentiation rule to obtain
the derivative of the function f(ξ) = ξ7 at the quadrature points using Q = 7, 8, 9. Verify how
many quadrature points are required to get an exact answer to numerical precision.

3 Interpolation on a one-dimensional standard region

Assignment (a): Interpolate the function f(ξ) = ξ12 evaluated at the Q = 13 Gauss-Lobatto-
Legendre zeros to Q = 10 equidistant points in the standard interval ξ = [−1, 1].

1

In Section 1.3.4.1, it is explained how Lagrange polynomials can be employed to interpolate
between different set of quadrature points. The interpolation is typically evaluated using the
interpolation matrix I:

I[i][p] = hp(ξi)

where hp(ξi) is the pth Lagrange polynomial associated to the initial set of quadrature points
evaluated at the ith interpolation point. Similar as for the differentiation matrix, the interpo-
lation matrix I can be obtained through the PointsManager of the Nektar++ library. This
has already been done for you. Write your own piece of code which interpolates the function
f(ξ) = ξ12 from the Gauss-Lobatto-Legendre set of points onto the set of equidistant points.
Verify that the interpolation is exact up to machine accuracy for the given parameters.

Now that you have obtained the values of the function f(ξ) = ξ12 at Q = 10 equidistant points,
calculate the quadrature weights associated with these points (using the PointsManager) and

numerically evaluate the integral
∫ 1

−1
f(ξ)d(ξ). Verify that for Q = 10 equidistant points, the

integral is not approximated exactly. Look back to Exercise 1(a) to check how many Gauss-
Lobatto-Legendre points were required to exactly integrate the function f(ξ).

2

Tutorial 2

1 Integration on two-dimensional elements

Assignment (a): Integrate the function f(ξ1, ξ2) = ξ121 ξ142 on the standard quadrilateral element
using Gaussian quadrature.
One dimensional Gaussian quadrature can be trivially extended to the two-dimensional standard
quadrilateral region as outlined in section 3.1.1 of the Course Notes . The quadrature weights
and zeros in each of the coordinate directions have already been calculated. Complete the code
by writing a structure of loops which implement the two-dimensional Gaussian quadrature rule.
Verify that the error ε is zero when Q1 = 8, Q2 = 9

Assignment (b): Integrate the function f(x1, x2) = x12
1 x

14
2 on a local quadrilateral element using

Gaussian quadrature.
Consider the local quadrilateral element with vertices (xA

1 , x
A
2) = (0,−1), (xB

1 , x
B
2) = (1,−1),

(xC
1 , x

C
2) = (1, 1) and (xD

1 , x
D
2) = (0, 0).

Your code can be based on the previous exercise. However, as we are calculating the integral of a
function defined on a local element rather than on a reference element (see section 3.1.3.3 of the
Notes), we have to take into account the geometry of the element. Therefore, the implementation
should be altered in two ways:

1. The quadrature zeros should be transformed to local coordinates to evaluate the integrand
f(x1, x2) at the quadrature points.

2. The Jacobian of the transformation between local and reference coordinates should be
taken into account when evaluating the integral. (Evaluate the expression for the Jacobian
analytically rather than using numerical differentiation)

Verify that the error ε is not equal to zero when Q1 = 8, Q2 = 9. Try to reason why this is.

2 Generation of the mass matrix

Assignment (a): Generate the mass matrix for the 7th order orthogonal spectral/hp basis on a
local standard element using 9th order Gaussian quadrature
Consider the local quadrilateral element with vertices (xA

1 , x
A
2) = (0,−1), (xB

1 , x
B
2) = (1,−1),

(xC
1 , x

C
2) = (1, 1) and (xD

1 , x
D
2) = (0, 1). (Note that the last vertex has different coordinates as

in the previous exercise)
As the elements of the mass matrix,

M [n][m] =

∫

Ω

φn(x1, x2)φm(x1, x2)dx1dx2

consist of an integral over the local quadrilateral region, your code can be based on the previous
exercise. In addition, we now also require information about the spectral/hp basis on the element.
The orthogonal basis, defined in Section 2.1.1, can be formulated as:

φn(x1, x2) = φpq(x1, x2) = ψ̃a
p(x1)ψ̃

b
q(x2)

As we only require the basis at the discrete quadrature points, the first step is to set up two
arrays base1[m(p, i)], base2[n(q, j)] for 0 ≤ p, q ≤ P = 7, 0 ≤ i, j < Q = 9 such that

base1[k(p, i)] = ψ̃a
p (ξ1i)

base2[l(q, j)] = ψ̃b
q(ξ2j)

3

These arrays can be obtained through the BasisManager of the Nektar++ library. This has
already been implemented. These arrays correspond to the matrix B (see Section 3.1.5.1 of the
Course Notes) of the one-dimensional bases stored in column major format. This implies that
the single indices k and l can be related to the pair of one-dimensional indices (p, i) and (q, j)
through the equations:

k(p, i) = p×Q+ i,

l(q, j) = q ×Q+ j.

The elements of the mass matrix can than be calculated by numerically evaluating:

M [n(p, q)][m(r, s)] =

∫ 1

−1

∫ 1

−1

ψ̃a
p(ξ1)ψ̃

b
q(ξ2)ψ̃

a
r (ξ1)ψ̃

b
s(ξ2)|J2D|dξ1dξ2

In the above expression n(p, q) and m(r, s) denote a mapping from the pair of one-dimensional
indices (p, q) and (r, s) in a single unique numbering which represents the location of each two-
dimensional mode in the matrix M . There are many different choices of numbering systems and
one of the most straightforward numbering scheme can be constructed as follows:

n(p, q) = p× (P + 1) + q,

m(r, s) = r × (P + 1) + s.

Complete the code by implementing a structure of loops which calculates every entry of the mass
matrix. Plot the structure of the matrix and verify that the mass matrix for the orthogonal basis
is diagonal in this case. (Note that this is only true for local elements when all angles are 90◦,
in which case the Jacobian J2D is constant.)

3 Elemental projection problem

Assignment (a): Project the function f(x1, x2) = x6
1x

6
2 defined on a local quadrilateral element

onto the spectral/hp element expansion defined on this element
Consider the local quadrilateral element with vertices (xA

1 , x
A
2) = (0,−1), (xB

1 , x
B
2) = (1,−1),

(xC
1 , x

C
2) = (1, 1) and (xD

1 , x
D
2) = (0, 0) and use:

- a 6th order C0 continuous modified expansion φpq(x1, x2) = ψa
p(x1)ψ

b
q(x2)

- 8th order Gauss-Lobatto-Legendre quadrature in both directions.

Having developed routines for integration in a general elemental region we continue our spectral/hp
element construction by considering an elemental projection problem in two-dimensions. Con-
sider the projection problem uδ(x1, x2) = f(x1, x2) where f(x1, x2) = x6

1x
6
2. Projection problems

are helpful since they do not require any boundary conditions to be imposed. Extending the
formulation in section 1.2 of the Course Notes our Galerkin problem in the elemental region Ωe

can be stated as:
Find uδ ∈ X δ, such that

∫

Ωe

vδ(x1, x2)u
δ(x1, x2)dx1x2 =

∫

Ωe

vδ(x1, x2)f(x1, x2)dx1x2 ∀ vδ ∈ Vδ,

and for a Galerkin expansion we define the expansion space mathcalXδ to be the same as the
test space Vδ.
Using the discrete expansion φpq(x1, x2) = ψa

p (x1)ψ
b
q(x2) and accordingly a discrete solution

4

uδ(x1, x2) =
∑

p

∑

q ûpqφpq(x1, x2) leads to the matrix problem (see also Section 3.1.5.3 of the
Course Notes)

Mû = f̂

where the above matrices and vectors were defined in Section 3.1.5.1 of the Course Notes .
Your implementation should consist of the following four parts:

1. Construct the mass matrix M . Base your implementation on the previous exercise.

2. Construct the right hand side vector f̂ :

f̂ [m(p, q)] =

∫ 1

−1

∫ 1

−1

ψa
p(ξ1)ψ

b
q(ξ2)f(ξ1, ξ2)|J2D|dξ1dξ2

3. Solve the resulting linear system for the expansion coefficients û. This has been imple-
mented for you using the corresponding Nektar++ routines.

4. Perform the backward transformation

uδ(x1, x2) =
∑

p

∑

q

ûpqψ
a
p(ξ1)ψ

b
q(ξ2)

Verify that the solution indeed approximates the function f(x1, x2) = x6
1x

6
2.

5

Tutorial 3

1 A two-dimensional Helmholtz problem

Assignment (a): Solve the Helmholtz equation with forcing function
f(x1, x2) = −(λ + 2π2) cos(πx1) cos(πx2) on the mesh defined in the input file QuadMesh.xml
using Nektar++ .
Information about the mesh and the boundary conditions are contained in the input file QuadMesh.xml.
(Make sure to copy this file to the directory where your executable is located.) The following
configuration of the problem is stored in this file:

- Domain of the problem: the bi-unit square x1 = [0, 1], x2 = [0, 1]

- The mesh: 4 identical quadrilateral (square) elements

- The expansion: 4th order C0 continuous modified spectral/hp expansion

- Forcing function: f(x1, x2) = −(λ+ 2π2) cos(πx1) cos(πx2)

- Boundary Conditions: Dirichlet boundary conditions g(x1, x2) = cos(πx1) cos(πx2) on the
entire domain boundary

- Exact solution: u(x1, x2) = cos(πx1) cos(πx2)

This exercise contains of two parts:

1. Complete the Helmholtz solver.
Solve the exercise using the proper Nektar++ classes and functions. The major part
is already implemented. However, some essential Nektar++ calls have been left out.
The task is to, using the doxygen documentation of the Nektar++ code, find out how
the code should be properly completed. The doxygen documentation can be found on:
http://www.nektar.info. Once this is finished, the solution should have been written to
the file Helmholtz2DSolution.pos. Open this file using the program Gmsh to see a plot of
the solution.

2. Convergence study.
Now you have a working Helmholtz solver, run it for the following configurations:

1 element , P = 2 (NUMMODES= P + 1 = 3)

h−refinement P−refinement
4 elements, P = 2 1 element , P = 4
9 elements, P = 2 1 element , P = 6
16 elements, P = 2 1 element , P = 8

To do so, you will have to modify (or create a new) input file for every case. Plot the
approximation error (calculated in the L2 norm) for every case in function of the number
of degrees of freedom in a semi-log plot. This can be done in the figure on the next page.
If your implementation is correct, you should observe two different convergence rates,
depending on the strategy (i.e. h−refinement versus P−refinement)

6

0 10 20 30 40 50 60 70 80 90
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

2 Differentiation on a two-dimensional local region

Assignment (a): Calculate the gradient ∇f of the function f(x1, x2) = x7
1x

7
2 on a local quadri-

lateral element
As outlined in Section 3.1.3.4 of the Course Notes , the derivative of a function f within a local
region can be evaluated as:

∇ =











∂f

∂x1

∂f

∂x2











=











∂ξ1

∂x1

∂f

∂ξ1
+

∂ξ2

∂x1

∂f

∂ξ2

∂ξ1

∂x2

∂f

∂ξ1
+

∂ξ2

∂x2

∂f

∂ξ2











.

Numerically evaluate ∇f at all quadrature points using Q = 8 quadrature points in both direc-
tions. The implementation consists of three different steps. Complete the code and:

1. Calculate the derivatives of the function f with respect to the reference coordinates ξ1 and
ξ2. (see Section 3.1.2.1 of the Course Notes),

2. Calculate the metric terms ∂ξi

∂xj
of the transformation between reference and local coordi-

nates. (Analytically evaluate the expression for these metric terms, see Section 3.1.3.4 of
the Course Notes),

3. Apply the chain rule to calculate the gradient of f with respect to the local coordinates x1

and x2.

Display the error ε for every quadrature points and verify that the numerical solution does
approximate the exact solution. However, although Q = 8 quadrature points are used the
solution is not exact. Try to reason why this is.

8

