Newer
Older
///////////////////////////////////////////////////////////////////////////////
//
// File LocToGlobalDGMap.cpp
//
// For more information, please see: http://www.nektar.info
//
// The MIT License
//
// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
// Department of Aeronautics, Imperial College London (UK), and Scientific
// Computing and Imaging Institute, University of Utah (USA).
//
// License for the specific language governing rights and limitations under
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
// Description: Local to Global Base Class mapping routines
//
///////////////////////////////////////////////////////////////////////////////
#include <MultiRegions/LocalToGlobalDGMap.h>
#include <LocalRegions/HexExp.h>
#include <LocalRegions/TetExp.h>
#include <LocalRegions/PrismExp.h>
#include <LocalRegions/PyrExp.h>
Spencer Sherwin
committed
#include <boost/config.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/cuthill_mckee_ordering.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/bandwidth.hpp>
namespace Nektar
{
namespace MultiRegions
{
LocalToGlobalDGMap::LocalToGlobalDGMap():
m_numDirichletBndPhys(0)
{
}
LocalToGlobalDGMap::~LocalToGlobalDGMap()
{
}
/**
*
*/
Chris Cantwell
committed
LocalToGlobalDGMap::LocalToGlobalDGMap( const LibUtilities::SessionReaderSharedPtr &pSession,
const SpatialDomains::MeshGraphSharedPtr &graph1D,
const ExpList &locExp,

Alessandro Bolis
committed
const Array<OneD, const MultiRegions::ExpListSharedPtr> &bndCondExp,
const Array<OneD, const SpatialDomains::BoundaryConditionShPtr> &bndCond):
Chris Cantwell
committed
LocalToGlobalBaseMap(pSession)
int cnt, vid, gid;
int nbnd = bndCondExp.num_elements();
// set up Local to Continuous mapping
Array<OneD,unsigned int> vmap;
LocalRegions::SegExpSharedPtr locSegExp;
const boost::shared_ptr<StdRegions::StdExpansionVector> exp1D = locExp.GetExp();
m_numGlobalBndCoeffs = exp1D->size()+1;
m_numGlobalCoeffs = m_numGlobalBndCoeffs;
m_numLocalBndCoeffs = 2*exp1D->size();
m_numLocalCoeffs = m_numLocalBndCoeffs;
m_localToGlobalBndMap = Array<OneD, int>(m_numLocalBndCoeffs,-1);
m_localToGlobalBndSign = Array<OneD, NekDouble>(m_numLocalBndCoeffs,1.0);
m_signChange = true;
m_staticCondLevel = 0;
m_numPatches = exp1D->size();
m_numLocalBndCoeffsPerPatch = Array<OneD, unsigned int>(m_numPatches);
m_numLocalIntCoeffsPerPatch = Array<OneD, unsigned int>(m_numPatches);
for(i = 0; i < m_numPatches; ++i)
{
m_numLocalBndCoeffsPerPatch[i] = (unsigned int) (*exp1D)[i]->NumDGBndryCoeffs();
m_numLocalIntCoeffsPerPatch[i] = (unsigned int) 0;
}
map<int, int> MeshVertToLocalVert;
// Order the Dirichlet vertices first.
gid = 0;
for(i = 0; i < nbnd; i++)
{
if(bndCond[i]->GetBoundaryConditionType() == SpatialDomains::eDirichlet)
{
m_numDirichletBndPhys++;
vid = ((bndCondExp[i])->GetVertex())->GetVid();
MeshVertToLocalVert[vid] = gid++;
}
}
// set up simple map based on vertex and edge id's
cnt = 0;
for(i = 0; i < exp1D->size(); ++i)
{
if(locSegExp = boost::dynamic_pointer_cast<LocalRegions::SegExp>((*exp1D)[i]))
{
locSegExp->GetBoundaryMap(vmap);
for(j = 0; j < locSegExp->GetNverts(); ++j)
vid = (locSegExp->GetGeom1D())->GetVid(j);
if(MeshVertToLocalVert.count(vid) == 0)
{
MeshVertToLocalVert[vid] = gid++;
}
m_localToGlobalBndMap[cnt+j] =
Spencer Sherwin
committed
MeshVertToLocalVert.find(vid)->second;
cnt += locSegExp->NumBndryCoeffs();
}
else
{
ASSERTL0(false,"dynamic cast to a segment expansion failed");
}
// Set up boundary mapping
m_bndCondCoeffsToGlobalCoeffsMap = Array<OneD, int >(nbnd);
m_bndCondCoeffsToGlobalCoeffsSign = Array<OneD, NekDouble >(nbnd,1.0);
m_numLocalDirBndCoeffs = 0;
m_numDirichletBndPhys = 0;
for(i = 0; i < nbnd; ++i)
{
vid = ((bndCondExp[i])->GetVertex())->GetVid();
m_bndCondCoeffsToGlobalCoeffsMap[i] = MeshVertToLocalVert.find(vid)->second;
if(bndCond[i]->GetBoundaryConditionType() == SpatialDomains::eDirichlet)
{
m_numLocalDirBndCoeffs += 1;
m_numDirichletBndPhys += 1;
m_numGlobalDirBndCoeffs = m_numLocalDirBndCoeffs;
CalculateBndSystemBandWidth();
// Check to see which way boundary point is
// orientated with respect to convention (croth)
m_bndExpAdjacentOrient = Array<OneD, AdjacentTraceOrientation > (nbnd);
for (int i=0; i<nbnd; i++)
{
vid = ((bndCondExp[i])->GetVertex())->GetVid();
//cout << "VID = "<<vid<<endl;
if(vid == 0)
{
m_bndExpAdjacentOrient[i] = eAdjacentEdgeIsBackwards;
}
else
{
m_bndExpAdjacentOrient[i] = eAdjacentEdgeIsForwards;
}
}
/**
*
*/
Chris Cantwell
committed
LocalToGlobalDGMap::LocalToGlobalDGMap(const LibUtilities::SessionReaderSharedPtr &pSession,
const SpatialDomains::MeshGraphSharedPtr &graph2D,
const ExpList1DSharedPtr &trace,
const ExpList &locExp,

Alessandro Bolis
committed
const Array<OneD, MultiRegions::ExpListSharedPtr> &bndCondExp,
const Array<OneD, SpatialDomains::BoundaryConditionShPtr> &bndCond,
const map<int,int> &periodicEdges) :
Chris Cantwell
committed
LocalToGlobalBaseMap(pSession)
int i,j,k,cnt,eid, id, id1, order_e,gid;
int ntrace_exp = trace->GetExpSize();
int nbnd = bndCondExp.num_elements();
Spencer Sherwin
committed
LocalRegions::SegExpSharedPtr locSegExp,locSegExp1;
LocalRegions::QuadExpSharedPtr locQuadExp;
LocalRegions::TriExpSharedPtr locTriExp;
SpatialDomains::Geometry1DSharedPtr SegGeom;
const boost::shared_ptr<StdRegions::StdExpansionVector> exp2D = locExp.GetExp();
int nel = exp2D->size();
map<int, int> MeshEdgeId;
// determine mapping from geometry edges to trace
for(i = 0; i < ntrace_exp; ++i)
{
if(locSegExp = boost::dynamic_pointer_cast<LocalRegions::SegExp>(trace->GetExp(i)))
{
id = (locSegExp->GetGeom1D())->GetEid();
if(periodicEdges.count(id) > 0)
{
if(MeshEdgeId.count(id) == 0)
{
id1 = periodicEdges.find(id)->second;
MeshEdgeId[id] = i;
MeshEdgeId[id1] = i;
}
}
else
{
MeshEdgeId[id] = i;
}
}
else
{
ASSERTL0(false,"Dynamics cast to segment expansion failed");
}
}
// Count total number of edges
cnt = 0;
for(i = 0; i < nel; ++i)
{
cnt += (*exp2D)[i]->GetNedges();
}
Array<OneD, StdRegions::StdExpansion1DSharedPtr> edgemap(cnt);
m_elmtToTrace = Array<OneD, Array<OneD,StdRegions::StdExpansion1DSharedPtr> >(nel);
// set up edge expansions links;
cnt = 0;
for(i = 0; i < nel; ++i)
{
m_elmtToTrace[i] = edgemap + cnt;
if(locQuadExp = boost::dynamic_pointer_cast<LocalRegions::QuadExp>((*exp2D)[i]))
{
for(j = 0; j < locQuadExp->GetNedges(); ++j)
SegGeom = (locQuadExp->GetGeom2D())->GetEdge(j);
id = SegGeom->GetEid();
if(MeshEdgeId.count(id) > 0)
{
m_elmtToTrace[i][j] = boost::dynamic_pointer_cast< LocalRegions::SegExp> ((*trace).GetExp(MeshEdgeId.find(id)->second));
}
else
{
ASSERTL0(false,"Failed to find edge map");
}
}
}
else if(locTriExp = boost::dynamic_pointer_cast<LocalRegions::TriExp>((*exp2D)[i]))
{
for(j = 0; j < locTriExp->GetNedges(); ++j)
SegGeom = (locTriExp->GetGeom2D())->GetEdge(j);
id = SegGeom->GetEid();
if(MeshEdgeId.count(id) > 0)
{
m_elmtToTrace[i][j] = boost::dynamic_pointer_cast< LocalRegions::SegExp> ((*trace).GetExp((MeshEdgeId.find(id))->second));
}
else
{
ASSERTL0(false,"Failed to find edge map");
}
}
}
else
{
ASSERTL0(false,"dynamic cast to a local 2D expansion failed");
cnt += (*exp2D)[i]->GetNedges();
}
// Set up boundary mapping
cnt = 0;
for(i = 0; i < nbnd; ++i)
{
cnt += bndCondExp[i]->GetExpSize();
}
Spencer Sherwin
committed
m_bndCondCoeffsToGlobalCoeffsMap = Array<OneD,int >(cnt);
m_bndExpAdjacentOrient = Array<OneD, AdjacentTraceOrientation > (cnt);
m_numLocalDirBndCoeffs = 0;
m_numDirichletBndPhys = 0;
cnt = 0;
for(i = 0; i < bndCondExp.num_elements(); ++i)
{
for(j = 0; j < bndCondExp[i]->GetExpSize(); ++j)
{
if(locSegExp = boost::dynamic_pointer_cast<LocalRegions::SegExp>(bndCondExp[i]->GetExp(j)))
{
SegGeom = locSegExp->GetGeom1D();
id = SegGeom->GetEid();
Spencer Sherwin
committed
#if OLDMAP
id = SegGeom->GetEid();
if(MeshEdgeId.count(id) > 0)
{
m_bndCondCoeffsToGlobalCoeffsMap[cnt+j] = MeshEdgeId.find(id)->second;
}
else
{
ASSERTL0(false,"Failed to find edge map");
}
Spencer Sherwin
committed
#endif
Spencer Sherwin
committed
// Check to see which way boundary edge is
// orientated with respect to connecting
// element counter-clockwise convention.
SpatialDomains::ElementEdgeVectorSharedPtr con_elmt
= boost::dynamic_pointer_cast<SpatialDomains::MeshGraph2D>(graph2D)->GetElementsFromEdge(SegGeom);
if((boost::dynamic_pointer_cast<SpatialDomains::Geometry2D>((*con_elmt)[0]->m_Element))->GetEorient((*con_elmt)[0]->m_EdgeIndx) == StdRegions::eForwards)
{
m_bndExpAdjacentOrient[cnt+j] = eAdjacentEdgeIsForwards;
}
else
{
m_bndExpAdjacentOrient[cnt+j] = eAdjacentEdgeIsBackwards;
}
}
else
{
ASSERTL0(false,"dynamic cast to a local Segment expansion failed");
}
if(bndCond[i]->GetBoundaryConditionType() == SpatialDomains::eDirichlet)
m_numLocalDirBndCoeffs += locSegExp->GetNcoeffs();
m_numDirichletBndPhys += locSegExp->GetTotPoints();
}
cnt += j;
}
// Set up integer mapping array and sign change for each
// degree of freedom + initialise some more data members
m_staticCondLevel = 0;
m_numPatches = nel;
m_numLocalBndCoeffsPerPatch = Array<OneD, unsigned int>(nel);
m_numLocalIntCoeffsPerPatch = Array<OneD, unsigned int>(nel);
int nbndry = 0;
for(i = 0; i < nel; ++i) // count number of elements in array
{
eid = locExp.GetOffset_Elmt_Id(i);
nbndry += (*exp2D)[eid]->NumDGBndryCoeffs();
m_numLocalBndCoeffsPerPatch[i] = (unsigned int) (*exp2D)[eid]->NumDGBndryCoeffs();
m_numLocalIntCoeffsPerPatch[i] = (unsigned int) 0;
m_numGlobalDirBndCoeffs = m_numLocalDirBndCoeffs;
m_localToGlobalBndMap = Array<OneD, int > (nbndry);
m_localToGlobalBndSign = Array<OneD, NekDouble > (nbndry,1);
Spencer Sherwin
committed
// Set up array for potential mesh optimsation
Array<OneD,int> TraceElmtGid(ntrace_exp,-1);
int nDir = 0;
cnt = 0;
// We are now going to construct a graph of the mesh
// which can be reordered depending on the type of solver we would
// like to use.
typedef boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS> BoostGraph;
typedef boost::graph_traits<BoostGraph>::vertex_descriptor BoostVertex;
BoostGraph boostGraphObj;
int trace_id,trace_id1;
// make trace edge renumbering map where first solved
// edge starts at 0 so we can set up graph.
for(i = 0; i < ntrace_exp; ++i)
Spencer Sherwin
committed
{
if(trace->GetCoeff_Offset(i) >= m_numLocalDirBndCoeffs)
Spencer Sherwin
committed
{
// Initial put in element ordering (starting
// from zero) into TraceElmtGid
boost::add_vertex(boostGraphObj);
TraceElmtGid[i] = cnt++;
Spencer Sherwin
committed
}
Spencer Sherwin
committed
{
// Use existing offset for Dirichlet edges
TraceElmtGid[i] = trace->GetCoeff_Offset(i);
nDir++;
}
}
// Set up boost Graph
for(i = 0; i < nel; ++i)
{
eid = locExp.GetOffset_Elmt_Id(i);
nbndry += (*exp2D)[eid]->NumDGBndryCoeffs();
for(j = 0; j < (*exp2D)[eid]->GetNedges(); ++j)
locSegExp = boost::dynamic_pointer_cast<LocalRegions::SegExp>(m_elmtToTrace[eid][j]);
// Add edge to boost graph for non-Dirichlet Boundary
id = SegGeom->GetEid();
trace_id = MeshEdgeId.find(id)->second;
if(trace->GetCoeff_Offset(trace_id) >= m_numLocalDirBndCoeffs)
for(k = j+1; k < (*exp2D)[eid]->GetNedges(); ++k)
locSegExp1 = boost::dynamic_pointer_cast<LocalRegions::SegExp>(m_elmtToTrace[eid][k]);
id1 = SegGeom->GetEid();
trace_id1 = MeshEdgeId.find(id1)->second;
if(trace->GetCoeff_Offset(trace_id1)
>= m_numLocalDirBndCoeffs)
{
boost::add_edge( (size_t) TraceElmtGid[trace_id], (size_t) TraceElmtGid[trace_id1], boostGraphObj);
Spencer Sherwin
committed
}
}
}
}
}
int nGraphVerts = ntrace_exp-nDir;
Array<OneD, int> perm(nGraphVerts);
Array<OneD, int> iperm(nGraphVerts);
BottomUpSubStructuredGraphSharedPtr bottomUpGraph;
Array<OneD, int> vwgts(nGraphVerts);
for(i = 0; i < nGraphVerts; ++i)
Spencer Sherwin
committed
{
vwgts[i] = trace->GetExp(i+nDir)->GetNcoeffs();
Chris Cantwell
committed
switch(m_solnType)
Spencer Sherwin
committed
{
{
NoReordering(boostGraphObj,perm,iperm);
}
break;
case eDirectStaticCond:
case eIterativeStaticCond:
{
CuthillMckeeReordering(boostGraphObj,perm,iperm);
}
break;
case eDirectMultiLevelStaticCond:
case eIterativeMultiLevelStaticCond:
{
MultiLevelBisectionReordering(boostGraphObj,vwgts,perm,iperm,bottomUpGraph);
}
break;
default:
{
ASSERTL0(false,"Unrecognised solution type");
}
Spencer Sherwin
committed
}
// Recast the permutation so that it can be
// used as a map Form old trace edge ID to new trace
// edge ID
cnt = m_numLocalDirBndCoeffs;
for(i = 0; i < ntrace_exp-nDir; ++i)
{
TraceElmtGid[perm[i]+nDir]=cnt;
cnt += trace->GetExp(perm[i]+nDir)->GetNcoeffs();
Spencer Sherwin
committed
// Now have trace edges Gid position
nbndry = cnt = 0;
for(i = 0; i < nel; ++i)
{
// order list according to m_offset_elmt_id details in
// Exp2D so that triangules are listed first and then
// quads
eid = locExp.GetOffset_Elmt_Id(i);
nbndry += (*exp2D)[eid]->NumDGBndryCoeffs();
for(j = 0; j < (*exp2D)[eid]->GetNedges(); ++j)
locSegExp = boost::dynamic_pointer_cast<LocalRegions::SegExp>(m_elmtToTrace[eid][j]);
SegGeom = locSegExp->GetGeom1D();
id = SegGeom->GetEid();
Spencer Sherwin
committed
gid = TraceElmtGid[MeshEdgeId.find(id)->second];
//Peter order_e = locSegExp->GetNcoeffs();
order_e = (*exp2D)[eid]->GetEdgeNcoeffs(j);
if((*exp2D)[eid]->GetEorient(j) == StdRegions::eForwards)
{
for(k = 0; k < order_e; ++k)
{
m_localToGlobalBndMap[k+cnt] = gid + k;
}
}
else // backwards orientated
{
switch(locSegExp->GetBasisType(0))
{
case LibUtilities::eModified_A:
// reverse vertex order
m_localToGlobalBndMap[cnt] = gid + 1;
m_localToGlobalBndMap[cnt+1] = gid;
for(k = 2; k < order_e; ++k)
{
m_localToGlobalBndMap[k+cnt] = gid + k;
}
// negate odd modes
for(k = 3; k < order_e; k+=2)
{
m_localToGlobalBndSign[cnt+k] = -1.0;
break;
case LibUtilities::eGLL_Lagrange:
// reverse order
for(k = 0; k < order_e; ++k)
{
m_localToGlobalBndMap[cnt+order_e-k-1] = gid + k;
}
break;
default:
ASSERTL0(false,"Boundary type not permitted");
}
}
cnt += order_e;
}
}
Spencer Sherwin
committed
// set up m_bndCondCoeffsToGlobalCoeffsMap to align with map
cnt = 0;
for(i = 0; i < nbnd; ++i)
{
cnt += bndCondExp[i]->GetNcoeffs();
}
Spencer Sherwin
committed
m_bndCondCoeffsToGlobalCoeffsMap = Array<OneD,int >(cnt);
// Number of boundary expansions
int nbndexp = 0;
Spencer Sherwin
committed
for(cnt = i = 0; i < nbnd; ++i)
{
for(j = 0; j < bndCondExp[i]->GetExpSize(); ++j)
{
if(locSegExp = boost::dynamic_pointer_cast<LocalRegions::SegExp>(bndCondExp[i]->GetExp(j)))
{
nbndexp++;
SegGeom = locSegExp->GetGeom1D();
id = SegGeom->GetEid();
gid = TraceElmtGid[MeshEdgeId.find(id)->second];
order_e = locSegExp->GetNcoeffs();
// Since boundary information is defined to be
// aligned with the geometry just use forward
// defintiion for gid's
for(k = 0; k < order_e; ++k)
{
m_bndCondCoeffsToGlobalCoeffsMap[cnt++] = gid + k;
}
Spencer Sherwin
committed
}
}
}
m_numGlobalBndCoeffs = trace->GetNcoeffs();
m_numGlobalCoeffs = m_numGlobalBndCoeffs;
Spencer Sherwin
committed
Chris Cantwell
committed
if( m_solnType == eDirectMultiLevelStaticCond && nGraphVerts )
if(m_staticCondLevel < (bottomUpGraph->GetNlevels()-1))
Array<OneD, int> vwgts_perm(nGraphVerts);
for(int i = 0; i < nGraphVerts; i++)
{
vwgts_perm[i] = vwgts[perm[i]];
}
bottomUpGraph->ExpandGraphWithVertexWeights(vwgts_perm);
m_nextLevelLocalToGlobalMap = MemoryManager<LocalToGlobalBaseMap>::
AllocateSharedPtr(this,bottomUpGraph);
cnt = 0;
m_bndCondTraceToGlobalTraceMap = Array<OneD, int >(nbndexp);
for(i = 0; i < bndCondExp.num_elements(); ++i)
{
for(j = 0; j < bndCondExp[i]->GetExpSize(); ++j)
{
if(locSegExp = boost::dynamic_pointer_cast<LocalRegions::SegExp>(bndCondExp[i]->GetExp(j)))
{
SegGeom = locSegExp->GetGeom1D();
id = SegGeom->GetEid();
m_bndCondTraceToGlobalTraceMap[cnt++] = MeshEdgeId.find(id)->second;
}
}
}
// Now set up mapping from global coefficients to universal.
SetUpUniversalDGMap(locExp);
// Initialise GSlib and populate the unique map.
Nektar::Array<OneD, long> tmp(m_globalToUniversalBndMap.num_elements());
for (unsigned int i = 0; i < m_globalToUniversalBndMap.num_elements(); ++i)
{
tmp[i] = m_globalToUniversalBndMap[i];
}
Chris Cantwell
committed
m_gsh = Gs::Init(tmp, m_comm);
Gs::Unique(tmp, m_comm);
for (unsigned int i = 0; i < m_globalToUniversalBndMap.num_elements(); ++i)
{
m_globalToUniversalBndMapUnique[i] = (tmp[i] >= 0 ? 1 : 0);
}
}
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* Constructor for trace map for three-dimensional expansion.
*/
LocalToGlobalDGMap::LocalToGlobalDGMap(const LibUtilities::SessionReaderSharedPtr &pSession,
const SpatialDomains::MeshGraphSharedPtr &graph3D,
const ExpList2DSharedPtr &trace,
const ExpList &locExp,
const Array<OneD, MultiRegions::ExpListSharedPtr> &bndCondExp,
const Array<OneD, SpatialDomains::BoundaryConditionShPtr> &bndCond,
const map<int,int> &periodicFaces):
LocalToGlobalBaseMap(pSession)
{
int i,j,k,cnt,eid, id, id1, order_e,gid;
int ntrace_exp = trace->GetExpSize();
int nbnd = bndCondExp.num_elements();
LocalRegions::QuadExpSharedPtr locQuadExp, locQuadExp1;
LocalRegions::TriExpSharedPtr locTriExp, locTriExp1;
LocalRegions::HexExpSharedPtr locHexExp;
LocalRegions::PrismExpSharedPtr locPrismExp;
LocalRegions::PyrExpSharedPtr locPyrExp;
LocalRegions::TetExpSharedPtr locTetExp;
SpatialDomains::Geometry2DSharedPtr FaceGeom;
const boost::shared_ptr<StdRegions::StdExpansionVector> exp3D = locExp.GetExp();
int nel = exp3D->size();
map<int, int> MeshFaceId;
m_signChange = true;
// determine mapping from geometry edges to trace
for(i = 0; i < ntrace_exp; ++i)
{
//quad face
if(locQuadExp = boost::dynamic_pointer_cast<LocalRegions::QuadExp>(trace->GetExp(i)))
{
id = (locQuadExp->GetGeom2D())->GetFid();
}
//tri face
if(locTriExp = boost::dynamic_pointer_cast<LocalRegions::TriExp>(trace->GetExp(i)))
{
id = (locTriExp->GetGeom2D())->GetFid();
}
else
{
ASSERTL0(false,"Dynamic cast to face expansion failed");
}
if(periodicFaces.count(id) > 0)
{
if(MeshFaceId.count(id) == 0)
{
id1 = periodicFaces.find(id)->second;
MeshFaceId[id] = i;
MeshFaceId[id1] = i;
}
}
else
{
MeshFaceId[id] = i;
}
}
// Count total number of faces
cnt = 0;
for(i = 0; i < nel; ++i)
{
cnt += (*exp3D)[i]->GetNfaces();
}
Array<OneD, StdRegions::StdExpansion2DSharedPtr> facemap(cnt);
m_elmtToFace = Array<OneD, Array<OneD,StdRegions::StdExpansion2DSharedPtr> >(nel);
// set up face expansions links;
cnt = 0;
for(i = 0; i < nel; ++i)
{
m_elmtToFace[i] = facemap + cnt;
//if Hex expansion
if(locHexExp = boost::dynamic_pointer_cast<LocalRegions::HexExp>((*exp3D)[i]))
{
for(j = 0; j < locHexExp->GetNfaces(); ++j)
{
FaceGeom = (locHexExp->GetGeom3D())->GetFace(j);
id = FaceGeom->GetFid();
if(MeshFaceId.count(id) > 0)
{
if(FaceGeom->GetGeomShapeType() == SpatialDomains::eQuadrilateral)
{
m_elmtToFace[i][j] = boost::dynamic_pointer_cast< LocalRegions::QuadExp> ((*trace).GetExp(MeshFaceId.find(id)->second));
}
else if(FaceGeom->GetGeomShapeType() == SpatialDomains::eTriangle)
{
m_elmtToFace[i][j] = boost::dynamic_pointer_cast< LocalRegions::TriExp> ((*trace).GetExp(MeshFaceId.find(id)->second));
}
else
{
ASSERTL0(false,"Unknown face geometry shape type");
}
}
else
{
ASSERTL0(false,"Failed to find face map");
}
}
}
//else if Tet expansion
else if(locTetExp = boost::dynamic_pointer_cast<LocalRegions::TetExp>((*exp3D)[i]))
{
for(j = 0; j < locTetExp->GetNfaces(); ++j)
{
FaceGeom = (locTetExp->GetGeom3D())->GetFace(j);
id = FaceGeom->GetFid();
if(MeshFaceId.count(id) > 0)
{
if(FaceGeom->GetGeomShapeType() == SpatialDomains::eQuadrilateral)
{
m_elmtToFace[i][j] = boost::dynamic_pointer_cast< LocalRegions::QuadExp> ((*trace).GetExp(MeshFaceId.find(id)->second));
}
else if(FaceGeom->GetGeomShapeType() == SpatialDomains::eTriangle)
{
m_elmtToFace[i][j] = boost::dynamic_pointer_cast< LocalRegions::TriExp> ((*trace).GetExp(MeshFaceId.find(id)->second));
}
else
{
ASSERTL0(false,"Unknown face geometry shape type");
}
}
else
{
ASSERTL0(false,"Failed to find face map");
}
}
}
//else if Pyramid expansion
else if(locPyrExp = boost::dynamic_pointer_cast<LocalRegions::PyrExp>((*exp3D)[i]))
{
for(j = 0; j < locPyrExp->GetNfaces(); ++j)
{
FaceGeom = (locPyrExp->GetGeom3D())->GetFace(j);
id = FaceGeom->GetFid();
if(MeshFaceId.count(id) > 0)
{
if(FaceGeom->GetGeomShapeType() == SpatialDomains::eQuadrilateral)
{
m_elmtToFace[i][j] = boost::dynamic_pointer_cast< LocalRegions::QuadExp> ((*trace).GetExp(MeshFaceId.find(id)->second));
}
else if(FaceGeom->GetGeomShapeType() == SpatialDomains::eTriangle)
{
m_elmtToFace[i][j] = boost::dynamic_pointer_cast< LocalRegions::TriExp> ((*trace).GetExp(MeshFaceId.find(id)->second));
}
else
{
ASSERTL0(false,"Unknown face geometry shape type");
}
}
else
{
ASSERTL0(false,"Failed to find face map");
}
}
}
//else if Prism expansion
else if(locPrismExp = boost::dynamic_pointer_cast<LocalRegions::PrismExp>((*exp3D)[i]))
{
for(j = 0; j < locPrismExp->GetNfaces(); ++j)
{
FaceGeom = (locPrismExp->GetGeom3D())->GetFace(j);
id = FaceGeom->GetFid();
if(MeshFaceId.count(id) > 0)
{
if(FaceGeom->GetGeomShapeType() == SpatialDomains::eQuadrilateral)
{
m_elmtToFace[i][j] = boost::dynamic_pointer_cast< LocalRegions::QuadExp> ((*trace).GetExp(MeshFaceId.find(id)->second));
}
else if(FaceGeom->GetGeomShapeType() == SpatialDomains::eTriangle)
{
m_elmtToFace[i][j] = boost::dynamic_pointer_cast< LocalRegions::TriExp> ((*trace).GetExp(MeshFaceId.find(id)->second));
}
else
{
ASSERTL0(false,"Unknown face geometry shape type");
}
}
else
{
ASSERTL0(false,"Failed to find face map");
}
}
}
else
{
ASSERTL0(false,"dynamic cast to a local 3D expansion failed");
}
cnt += (*exp3D)[i]->GetNfaces();
}
// Set up boundary mapping
cnt = 0;
for(i = 0; i < nbnd; ++i)
{
cnt += bndCondExp[i]->GetExpSize();
}
#if OLDMAP
m_bndCondCoeffsToGlobalCoeffsMap = Array<OneD,int >(cnt);
#endif
m_bndExpAdjacentFaceOrient = Array<OneD, AdjacentFaceOrientation > (cnt);
m_numLocalDirBndCoeffs = 0;
m_numDirichletBndPhys = 0;
cnt = 0;
for(i = 0; i < bndCondExp.num_elements(); ++i)
{
for(j = 0; j < bndCondExp[i]->GetExpSize(); ++j)
{
//if face is quad
if(locQuadExp = boost::dynamic_pointer_cast<LocalRegions::QuadExp>(bndCondExp[i]->GetExp(j)))
{
FaceGeom = locQuadExp->GetGeom2D();
id = FaceGeom->GetFid();
#if OLDMAP
id = FaceGeom->GetFid();
if(MeshFaceId.count(id) > 0)
{
m_bndCondCoeffsToGlobalCoeffsMap[cnt+j] = MeshFaceId.find(id)->second;
}
else
{
ASSERTL0(false,"Failed to find face map");
}
#endif
// Check to see which way boundary face is
// orientated with respect to connecting
// element.
SpatialDomains::ElementFaceVectorSharedPtr con_elmt
= boost::dynamic_pointer_cast<SpatialDomains::MeshGraph3D>(graph3D)->GetElementsFromFace(FaceGeom);
StdRegions::FaceOrientation cur_face_orientation
= (boost::dynamic_pointer_cast<SpatialDomains::Geometry3D>((*con_elmt)[0]->m_Element))->GetFaceorient((*con_elmt)[0]->m_FaceIndx);
switch(cur_face_orientation)
{
case StdRegions::eDir1FwdDir1_Dir2FwdDir2:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1FwdDir1_Dir2FwdDir2;
break;
case StdRegions::eDir1FwdDir1_Dir2BwdDir2:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1FwdDir1_Dir2BwdDir2;
break;
case StdRegions::eDir1BwdDir1_Dir2FwdDir2:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1BwdDir1_Dir2FwdDir2;
break;
case StdRegions::eDir1BwdDir1_Dir2BwdDir2:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1BwdDir1_Dir2BwdDir2;
break;
case StdRegions::eDir1FwdDir2_Dir2FwdDir1:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1FwdDir2_Dir2FwdDir1;
break;
case StdRegions::eDir1FwdDir2_Dir2BwdDir1:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1FwdDir2_Dir2BwdDir1;
break;
case StdRegions::eDir1BwdDir2_Dir2FwdDir1:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1BwdDir2_Dir2FwdDir1;
break;
case StdRegions::eDir1BwdDir2_Dir2BwdDir1:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1BwdDir2_Dir2BwdDir1;
break;
default:
ASSERTL0(false, "Unknown adjacent face orientation");
};
if(bndCond[i]->GetBoundaryConditionType() == SpatialDomains::eDirichlet)
{
m_numLocalDirBndCoeffs += locQuadExp->GetNcoeffs();
m_numDirichletBndPhys += locQuadExp->GetTotPoints();
}
}
//else if face is triangle
else if(locTriExp = boost::dynamic_pointer_cast<LocalRegions::TriExp>(bndCondExp[i]->GetExp(j)))
{
FaceGeom = locTriExp->GetGeom2D();
id = FaceGeom->GetFid();
#if OLDMAP
id = FaceGeom->GetFid();
if(MeshFaceId.count(id) > 0)
{
m_bndCondCoeffsToGlobalCoeffsMap[cnt+j] = MeshFaceId.find(id)->second;
}
else
{
ASSERTL0(false,"Failed to find face map");
}
#endif
// Check to see which way boundary face is
// orientated with respect to connecting
// element.
SpatialDomains::ElementFaceVectorSharedPtr con_elmt
= boost::dynamic_pointer_cast<SpatialDomains::MeshGraph3D>(graph3D)->GetElementsFromFace(FaceGeom);
StdRegions::FaceOrientation cur_face_orientation
= (boost::dynamic_pointer_cast<SpatialDomains::Geometry3D>((*con_elmt)[0]->m_Element))->GetFaceorient((*con_elmt)[0]->m_FaceIndx);
switch(cur_face_orientation)
{
case StdRegions::eDir1FwdDir1_Dir2FwdDir2:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1FwdDir1_Dir2FwdDir2;
break;
case StdRegions::eDir1FwdDir1_Dir2BwdDir2:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1FwdDir1_Dir2BwdDir2;
break;
case StdRegions::eDir1BwdDir1_Dir2FwdDir2:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1BwdDir1_Dir2FwdDir2;
break;
case StdRegions::eDir1BwdDir1_Dir2BwdDir2:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1BwdDir1_Dir2BwdDir2;
break;
case StdRegions::eDir1FwdDir2_Dir2FwdDir1:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1FwdDir2_Dir2FwdDir1;
break;
case StdRegions::eDir1FwdDir2_Dir2BwdDir1:
m_bndExpAdjacentFaceOrient[cnt+j] = eAdjacentFaceDir1FwdDir2_Dir2BwdDir1;