Skip to content
Snippets Groups Projects
Commit 5be5c7dd authored by Spencer Sherwin's avatar Spencer Sherwin
Browse files

First compiling version of InterpField but not debugged

parent 9c5c6a9e
No related branches found
No related tags found
No related merge requests found
////////////////////////////////////////////////////////////////////////////////
//
// File: ProcessInterpField.cpp
//
// For more information, please see: http://www.nektar.info/
//
// The MIT License
//
// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
// Department of Aeronautics, Imperial College London (UK), and Scientific
// Computing and Imaging Institute, University of Utah (USA).
//
// License for the specific language governing rights and limitations under
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
// Description: Interpolate one field to another.
//
////////////////////////////////////////////////////////////////////////////////
#include <string>
#include <iostream>
using namespace std;
#include "ProcessInterpField.h"
#include <LibUtilities/BasicUtils/SharedArray.hpp>
#include <LibUtilities/BasicUtils/ParseUtils.hpp>
namespace Nektar
{
namespace Utilities
{
ModuleKey ProcessInterpField::className =
GetModuleFactory().RegisterCreatorFunction(
ModuleKey(eProcessModule, "interpfield"),
ProcessInterpField::create, "Interpolates one field to another, requires fromxml, fromfld to be defined");
ProcessInterpField::ProcessInterpField(FieldSharedPtr f) : ProcessModule(f)
{
m_config["fromxml"] = ConfigOption(false,"NotSet","Xml file form which to interpolate field");
ASSERTL0(m_config["fromxml"].as<string>().compare("NotSet") != 0,
"Need to specify fromxml=file.xml");
m_config["fromfld"] = ConfigOption(false,"NotSet","Fld file form which to interpolate field");
ASSERTL0(m_config["fromfld"].as<string>().compare("NotSet") != 0,
"Need to specify fromfld=file.fld ");
m_config["ClampToLowerValue"] = ConfigOption(false,"-10000",
"Lower bound for interpolation value");
m_config["ClampToUpperValue"] = ConfigOption(false,"10000",
"Upper bound for interpolation value");
}
ProcessInterpField::~ProcessInterpField()
{
}
void ProcessInterpField::Process(po::variables_map &vm)
{
if(m_f->m_verbose)
{
cout << "Processing interpolation" << endl;
}
m_fromField = boost::shared_ptr<Field>(new Field());
std::vector<std::string> files;
// set up session file for from field
files.push_back(m_config["fromxml"].as<string>());
m_fromField->m_session = LibUtilities::SessionReader::
CreateInstance(0, 0, files);
// Set up range based on min and max of local parallel partition
SpatialDomains::DomainRangeShPtr rng = MemoryManager<SpatialDomains::DomainRange>::AllocateSharedPtr();
int coordim = m_f->m_exp[0]->GetCoordim(0);
int npts = m_f->m_exp[0]->GetTotPoints();
Array<OneD, Array<OneD, NekDouble> > coords(3);
for(int i = 0; i < coordim; ++i)
{
coords[i] = Array<OneD, NekDouble>(npts);
}
for(int i = coordim; i < 3; ++i)
{
coords[i] = NullNekDouble1DArray;
}
m_f->m_exp[0]->GetCoords(coords[0],coords[1],coords[2]);
switch(coordim)
{
case 3:
rng->doZrange = true;
rng->zmin = Vmath::Vmin(npts,coords[2],1);
rng->zmax = Vmath::Vmax(npts,coords[2],1);
case 2:
rng->doYrange = true;
rng->ymin = Vmath::Vmin(npts,coords[1],1);
rng->ymax = Vmath::Vmax(npts,coords[1],1);
case 1:
rng->doXrange = true;
rng->xmin = Vmath::Vmin(npts,coords[0],1);
rng->xmax = Vmath::Vmax(npts,coords[0],1);
break;
default:
ASSERTL0(false,"too many values specfied in range");
}
// setup rng parameters.
m_fromField->m_graph = SpatialDomains::MeshGraph::Read(m_fromField->m_session,rng);
// Read in local from field partitions
const SpatialDomains::ExpansionMap &expansions = m_fromField->m_graph->GetExpansions();
// check for case where no elements are specified on this
// parallel partition
if(!expansions.size())
{
return;
}
Array<OneD,int> ElementGIDs(expansions.size());
SpatialDomains::ExpansionMap::const_iterator expIt;
int i = 0;
for (expIt = expansions.begin(); expIt != expansions.end();
++expIt)
{
ElementGIDs[i++] = expIt->second->m_geomShPtr->GetGlobalID();
}
m_fromField->m_fld->Import(m_config["fromfld"].as<string>(),
m_fromField->m_fielddef,
m_fromField->m_data,
LibUtilities::NullFieldMetaDataMap,
ElementGIDs);
int NumHomogeneousDir = m_f->m_fielddef[0]->m_numHomogeneousDir;
//----------------------------------------------
// Set up Expansion information to use mode order from field
m_fromField->m_graph->SetExpansions(m_fromField->m_fielddef);
int nfields = m_fromField->m_fielddef[0]->m_fields.size();
m_fromField->m_exp.resize(nfields);
m_fromField->m_exp[0] = m_f->SetUpFirstExpList(NumHomogeneousDir,true);
m_f->m_exp.resize(nfields);
// declare auxiliary fields.
for(i = 1; i < nfields; ++i)
{
m_f->m_exp[i] = m_f->AppendExpList();
m_fromField->m_exp[i] = m_fromField->AppendExpList();
}
// load field into expansion in fromfield.
for(int j = 0; j < nfields; ++j)
{
for (i = 0; i < m_f->m_fielddef.size(); i++)
{
m_fromField->m_exp[j]->ExtractDataToCoeffs(m_fromField->m_fielddef[i],
m_fromField->m_data[i],
m_fromField->m_fielddef[0]->m_fields[j],
m_fromField->m_exp[j]->UpdateCoeffs());
}
}
int nq1 = m_f->m_exp[0]->GetTotPoints();
Array<OneD, NekDouble> x1(nq1);
Array<OneD, NekDouble> y1(nq1);
Array<OneD, NekDouble> z1(nq1);
if (coordim == 2)
{
m_f->m_exp[0]->GetCoords(x1, y1);
}
else if (coordim == 3)
{
m_f->m_exp[0]->GetCoords(x1, y1, z1);
}
cout << "Interpolating [" << flush;
NekDouble clamp_low = m_config["ClampToLowerValue"].as<NekDouble>();
NekDouble clamp_up = m_config["ClampToUpperValue"].as<NekDouble>();
InterpolateField(m_fromField->m_exp, m_f->m_exp,
x1, y1, z1, clamp_low, clamp_up);
cout << "]" << endl;
// put field into field data for output
std::vector<LibUtilities::FieldDefinitionsSharedPtr> FieldDef
= m_f->m_exp[0]->GetFieldDefinitions();
std::vector<std::vector<NekDouble> > FieldData(FieldDef.size());
for (int j = 0; j < nfields; ++j)
{
m_f->m_exp[j]->FwdTrans(m_f->m_exp[j]->GetPhys(),m_f->m_exp[j]->UpdateCoeffs());
for (i = 0; i < FieldDef.size(); ++i)
{
FieldDef[i]->m_fields.push_back(m_fromField->m_fielddef[0]->m_fields[j]);
m_f->m_exp[j]->AppendFieldData(FieldDef[i], FieldData[i]);
}
}
m_f->m_fielddef = FieldDef;
m_f->m_data = FieldData;
}
void ProcessInterpField::InterpolateField(
vector<MultiRegions::ExpListSharedPtr> &field0,
vector<MultiRegions::ExpListSharedPtr> &field1,
Array<OneD, NekDouble> x,
Array<OneD, NekDouble> y,
Array<OneD, NekDouble> z,
NekDouble clamp_low,
NekDouble clamp_up)
{
int expdim = field0[0]->GetCoordim(0);
Array<OneD, NekDouble> coords(expdim), Lcoords(expdim);
int nq1 = field1[0]->GetTotPoints();
int elmtid, offset;
int r, f;
static int intpts = 0;
ASSERTL0(field0.size() == field1.size(),
"Input field dimension must be same as output dimension");
for (r = 0; r < nq1; r++)
{
coords[0] = x[r];
coords[1] = y[r];
if (expdim == 3)
{
coords[2] = z[r];
}
// Obtain Element and LocalCoordinate to interpolate
elmtid = field0[0]->GetExpIndex(coords, Lcoords, 1e-3);
offset = field0[0]->GetPhys_Offset(field0[0]->
GetOffset_Elmt_Id(elmtid));
for (f = 0; f < field1.size(); ++f)
{
NekDouble value;
value = field0[f]->GetExp(elmtid)->
StdPhysEvaluate(Lcoords, field0[f]->GetPhys() +offset);
if ((boost::math::isnan)(value))
{
ASSERTL0(false, "new value is not a number");
}
else
{
value = (value > clamp_up)? clamp_up :
((value < clamp_low)? clamp_low :
value);
field1[f]->UpdatePhys()[r] = value;
}
}
if (intpts%1000 == 0)
{
cout <<"." << flush;
}
intpts ++;
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
//
// File: ProcessInterpField.h
//
// For more information, please see: http://www.nektar.info/
//
// The MIT License
//
// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
// Department of Aeronautics, Imperial College London (UK), and Scientific
// Computing and Imaging Institute, University of Utah (USA).
//
// License for the specific language governing rights and limitations under
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
// Description: Computes vorticity field.
//
////////////////////////////////////////////////////////////////////////////////
#ifndef UTILITIES_PREPROCESSING_FIELDCONVERT_PROCESSVORTICITY
#define UTILITIES_PREPROCESSING_FIELDCONVERT_PROCESSVORTICITY
#include "Module.h"
namespace Nektar
{
namespace Utilities
{
/**
* @brief This processing module interpolates one field to another
*/
class ProcessInterpField : public ProcessModule
{
public:
/// Creates an instance of this class
static boost::shared_ptr<Module> create(FieldSharedPtr f) {
return MemoryManager<ProcessInterpField>::AllocateSharedPtr(f);
}
static ModuleKey className;
ProcessInterpField(FieldSharedPtr f);
virtual ~ProcessInterpField();
/// Write mesh to output file.
virtual void Process(po::variables_map &vm);
private:
FieldSharedPtr m_fromField;
void InterpolateField(vector<MultiRegions::ExpListSharedPtr> &field0,
vector<MultiRegions::ExpListSharedPtr> &field1,
Array<OneD, NekDouble> x,
Array<OneD, NekDouble> y,
Array<OneD, NekDouble> z,
NekDouble clamp_low,
NekDouble clamp_up);
};
}
}
#endif
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment